Research on Interference Signal Recognition in P Wave Pickup and Magnitude Estimation

In order to analyze the ability of STA/LTA, AIC, STA/LTA + AIC, and W-AIC methods to recognize interference signals during P wave pickup, we selected a large number of KiK-Net records for P wave arrival time recognition. The results indicate that a single method has limited recognition ability for i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geotechnical and geological engineering 2024-05, Vol.42 (3), p.1835-1848
Hauptverfasser: Yin, Deyu, Chen, Yadong, Yang, Yushun, Cheng, Yongzhen, Zhang, Chunlei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1848
container_issue 3
container_start_page 1835
container_title Geotechnical and geological engineering
container_volume 42
creator Yin, Deyu
Chen, Yadong
Yang, Yushun
Cheng, Yongzhen
Zhang, Chunlei
description In order to analyze the ability of STA/LTA, AIC, STA/LTA + AIC, and W-AIC methods to recognize interference signals during P wave pickup, we selected a large number of KiK-Net records for P wave arrival time recognition. The results indicate that a single method has limited recognition ability for interference signals. The STA/LTA combined with AIC method adds limiting conditions at the trigger point, achieving recognition accuracy of 93.0% and 91.7% for spike signals and drift signals. This method has good stability and accuracy for picking up P wave arrival. For regular interference signals, the accuracy of picking up after wavelet decomposition and reconstruction reaches 87.8%. In order to more accurately identify interference signals and improve pickup accuracy, different methods can be combined. On the other hand, there is a linear relationship between the amplitude and magnitude of the P band Fourier spectrum. The variances for P waves in the first 5 s in calculating earthquake magnitudes are 0.602, 0.462, and 0.423 for acceleration, velocity, and displacement, respectively. The results can provide reference for earthquake early warning algorithms based on artificial intelligence technology.
doi_str_mv 10.1007/s10706-023-02648-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3020652964</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3020652964</sourcerecordid><originalsourceid>FETCH-LOGICAL-a342t-a451fdefe7e68b57d793cbf110a084c86dc69efe167ef721a255fbd06c8245383</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwFPA8-ok2U12j1L8U6hYqsVjSLOTurVma7Ir-O1NXcGbh2EO7_ceM4-QcwaXDEBdRQYKZAZcpJF5mckDMmKFEhkreHVIRlBJyAQr-TE5iXEDkDBgI7JcYEQT7CttPZ36DoPDgN4ifWrW3mzpAm279k3XJL3xdE5fzCfSeWPf-h01vqYPZi_3NdKb2DXvZk-ekiNnthHPfveYLG9vnif32ezxbjq5nmVG5LzLTF4wV6NDhbJcFapWlbArxxgYKHNbytrKKslMKnSKM8OLwq1qkLbkeSFKMSYXQ-4utB89xk5v2j6ks6MWwEGm32WeKD5QNrQxBnR6F9Kh4Usz0Pv69FCfTvXpn_q0TCYxmGKC_RrDX_Q_rm9OFXKI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3020652964</pqid></control><display><type>article</type><title>Research on Interference Signal Recognition in P Wave Pickup and Magnitude Estimation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Yin, Deyu ; Chen, Yadong ; Yang, Yushun ; Cheng, Yongzhen ; Zhang, Chunlei</creator><creatorcontrib>Yin, Deyu ; Chen, Yadong ; Yang, Yushun ; Cheng, Yongzhen ; Zhang, Chunlei</creatorcontrib><description>In order to analyze the ability of STA/LTA, AIC, STA/LTA + AIC, and W-AIC methods to recognize interference signals during P wave pickup, we selected a large number of KiK-Net records for P wave arrival time recognition. The results indicate that a single method has limited recognition ability for interference signals. The STA/LTA combined with AIC method adds limiting conditions at the trigger point, achieving recognition accuracy of 93.0% and 91.7% for spike signals and drift signals. This method has good stability and accuracy for picking up P wave arrival. For regular interference signals, the accuracy of picking up after wavelet decomposition and reconstruction reaches 87.8%. In order to more accurately identify interference signals and improve pickup accuracy, different methods can be combined. On the other hand, there is a linear relationship between the amplitude and magnitude of the P band Fourier spectrum. The variances for P waves in the first 5 s in calculating earthquake magnitudes are 0.602, 0.462, and 0.423 for acceleration, velocity, and displacement, respectively. The results can provide reference for earthquake early warning algorithms based on artificial intelligence technology.</description><identifier>ISSN: 0960-3182</identifier><identifier>EISSN: 1573-1529</identifier><identifier>DOI: 10.1007/s10706-023-02648-6</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Acceleration ; Accuracy ; Algorithms ; Artificial intelligence ; Civil Engineering ; Earth and Environmental Science ; Earth Sciences ; Earthquakes ; Elastic waves ; Geotechnical Engineering &amp; Applied Earth Sciences ; Hydrogeology ; Interference ; Original Paper ; P band ; P waves ; Picking ; Recognition ; Seismic activity ; Terrestrial Pollution ; Waste Management/Waste Technology ; Wavelet transforms</subject><ispartof>Geotechnical and geological engineering, 2024-05, Vol.42 (3), p.1835-1848</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a342t-a451fdefe7e68b57d793cbf110a084c86dc69efe167ef721a255fbd06c8245383</citedby><cites>FETCH-LOGICAL-a342t-a451fdefe7e68b57d793cbf110a084c86dc69efe167ef721a255fbd06c8245383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10706-023-02648-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10706-023-02648-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Yin, Deyu</creatorcontrib><creatorcontrib>Chen, Yadong</creatorcontrib><creatorcontrib>Yang, Yushun</creatorcontrib><creatorcontrib>Cheng, Yongzhen</creatorcontrib><creatorcontrib>Zhang, Chunlei</creatorcontrib><title>Research on Interference Signal Recognition in P Wave Pickup and Magnitude Estimation</title><title>Geotechnical and geological engineering</title><addtitle>Geotech Geol Eng</addtitle><description>In order to analyze the ability of STA/LTA, AIC, STA/LTA + AIC, and W-AIC methods to recognize interference signals during P wave pickup, we selected a large number of KiK-Net records for P wave arrival time recognition. The results indicate that a single method has limited recognition ability for interference signals. The STA/LTA combined with AIC method adds limiting conditions at the trigger point, achieving recognition accuracy of 93.0% and 91.7% for spike signals and drift signals. This method has good stability and accuracy for picking up P wave arrival. For regular interference signals, the accuracy of picking up after wavelet decomposition and reconstruction reaches 87.8%. In order to more accurately identify interference signals and improve pickup accuracy, different methods can be combined. On the other hand, there is a linear relationship between the amplitude and magnitude of the P band Fourier spectrum. The variances for P waves in the first 5 s in calculating earthquake magnitudes are 0.602, 0.462, and 0.423 for acceleration, velocity, and displacement, respectively. The results can provide reference for earthquake early warning algorithms based on artificial intelligence technology.</description><subject>Acceleration</subject><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Civil Engineering</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earthquakes</subject><subject>Elastic waves</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>Hydrogeology</subject><subject>Interference</subject><subject>Original Paper</subject><subject>P band</subject><subject>P waves</subject><subject>Picking</subject><subject>Recognition</subject><subject>Seismic activity</subject><subject>Terrestrial Pollution</subject><subject>Waste Management/Waste Technology</subject><subject>Wavelet transforms</subject><issn>0960-3182</issn><issn>1573-1529</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKtfwFPA8-ok2U12j1L8U6hYqsVjSLOTurVma7Ir-O1NXcGbh2EO7_ceM4-QcwaXDEBdRQYKZAZcpJF5mckDMmKFEhkreHVIRlBJyAQr-TE5iXEDkDBgI7JcYEQT7CttPZ36DoPDgN4ifWrW3mzpAm279k3XJL3xdE5fzCfSeWPf-h01vqYPZi_3NdKb2DXvZk-ekiNnthHPfveYLG9vnif32ezxbjq5nmVG5LzLTF4wV6NDhbJcFapWlbArxxgYKHNbytrKKslMKnSKM8OLwq1qkLbkeSFKMSYXQ-4utB89xk5v2j6ks6MWwEGm32WeKD5QNrQxBnR6F9Kh4Usz0Pv69FCfTvXpn_q0TCYxmGKC_RrDX_Q_rm9OFXKI</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Yin, Deyu</creator><creator>Chen, Yadong</creator><creator>Yang, Yushun</creator><creator>Cheng, Yongzhen</creator><creator>Zhang, Chunlei</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>20240501</creationdate><title>Research on Interference Signal Recognition in P Wave Pickup and Magnitude Estimation</title><author>Yin, Deyu ; Chen, Yadong ; Yang, Yushun ; Cheng, Yongzhen ; Zhang, Chunlei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a342t-a451fdefe7e68b57d793cbf110a084c86dc69efe167ef721a255fbd06c8245383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acceleration</topic><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Civil Engineering</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earthquakes</topic><topic>Elastic waves</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>Hydrogeology</topic><topic>Interference</topic><topic>Original Paper</topic><topic>P band</topic><topic>P waves</topic><topic>Picking</topic><topic>Recognition</topic><topic>Seismic activity</topic><topic>Terrestrial Pollution</topic><topic>Waste Management/Waste Technology</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yin, Deyu</creatorcontrib><creatorcontrib>Chen, Yadong</creatorcontrib><creatorcontrib>Yang, Yushun</creatorcontrib><creatorcontrib>Cheng, Yongzhen</creatorcontrib><creatorcontrib>Zhang, Chunlei</creatorcontrib><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Geotechnical and geological engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yin, Deyu</au><au>Chen, Yadong</au><au>Yang, Yushun</au><au>Cheng, Yongzhen</au><au>Zhang, Chunlei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research on Interference Signal Recognition in P Wave Pickup and Magnitude Estimation</atitle><jtitle>Geotechnical and geological engineering</jtitle><stitle>Geotech Geol Eng</stitle><date>2024-05-01</date><risdate>2024</risdate><volume>42</volume><issue>3</issue><spage>1835</spage><epage>1848</epage><pages>1835-1848</pages><issn>0960-3182</issn><eissn>1573-1529</eissn><abstract>In order to analyze the ability of STA/LTA, AIC, STA/LTA + AIC, and W-AIC methods to recognize interference signals during P wave pickup, we selected a large number of KiK-Net records for P wave arrival time recognition. The results indicate that a single method has limited recognition ability for interference signals. The STA/LTA combined with AIC method adds limiting conditions at the trigger point, achieving recognition accuracy of 93.0% and 91.7% for spike signals and drift signals. This method has good stability and accuracy for picking up P wave arrival. For regular interference signals, the accuracy of picking up after wavelet decomposition and reconstruction reaches 87.8%. In order to more accurately identify interference signals and improve pickup accuracy, different methods can be combined. On the other hand, there is a linear relationship between the amplitude and magnitude of the P band Fourier spectrum. The variances for P waves in the first 5 s in calculating earthquake magnitudes are 0.602, 0.462, and 0.423 for acceleration, velocity, and displacement, respectively. The results can provide reference for earthquake early warning algorithms based on artificial intelligence technology.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10706-023-02648-6</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0960-3182
ispartof Geotechnical and geological engineering, 2024-05, Vol.42 (3), p.1835-1848
issn 0960-3182
1573-1529
language eng
recordid cdi_proquest_journals_3020652964
source SpringerLink Journals - AutoHoldings
subjects Acceleration
Accuracy
Algorithms
Artificial intelligence
Civil Engineering
Earth and Environmental Science
Earth Sciences
Earthquakes
Elastic waves
Geotechnical Engineering & Applied Earth Sciences
Hydrogeology
Interference
Original Paper
P band
P waves
Picking
Recognition
Seismic activity
Terrestrial Pollution
Waste Management/Waste Technology
Wavelet transforms
title Research on Interference Signal Recognition in P Wave Pickup and Magnitude Estimation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T22%3A32%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20on%20Interference%20Signal%20Recognition%20in%20P%20Wave%20Pickup%20and%20Magnitude%20Estimation&rft.jtitle=Geotechnical%20and%20geological%20engineering&rft.au=Yin,%20Deyu&rft.date=2024-05-01&rft.volume=42&rft.issue=3&rft.spage=1835&rft.epage=1848&rft.pages=1835-1848&rft.issn=0960-3182&rft.eissn=1573-1529&rft_id=info:doi/10.1007/s10706-023-02648-6&rft_dat=%3Cproquest_cross%3E3020652964%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3020652964&rft_id=info:pmid/&rfr_iscdi=true