Some characterizations of the disc by properties of isoptic triangles

The main result in this article is the following: Let K ⊂ R 2 be a regular convex body and let α , β , θ , be three angles such that K has α -chords, β -chords, and θ -chords of constant length and α + β + θ = π , then K is a disc. We also prove another characterization of the disc with respect to p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Aequationes mathematicae 2024-04, Vol.98 (2), p.591-602
Hauptverfasser: Ayala-Figueroa, Rafael I., González-García, Iván, Jerónimo-Castro, Jesús, Jimenez-Lopez, Francisco G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 602
container_issue 2
container_start_page 591
container_title Aequationes mathematicae
container_volume 98
creator Ayala-Figueroa, Rafael I.
González-García, Iván
Jerónimo-Castro, Jesús
Jimenez-Lopez, Francisco G.
description The main result in this article is the following: Let K ⊂ R 2 be a regular convex body and let α , β , θ , be three angles such that K has α -chords, β -chords, and θ -chords of constant length and α + β + θ = π , then K is a disc. We also prove another characterization of the disc with respect to properties of its ( α , β , θ ) -circumscribed triangles.
doi_str_mv 10.1007/s00010-023-00983-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3015442631</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3015442631</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-7299cf55da9ed136be3dbb7e2851c11ed5ab5d1080e54ad8d1d309c45f1184ef3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOC5-hMsunuHqXUDyh4UM8hm8y2KW13TVJK_fVuu4I3T8PwfszwMHaLcI8AxUMEAAQOQnKAqpR8f8ZGmAvgZQXynI2OOq9A5ZfsKsZVv4mikCM2e283lNmlCcYmCv7bJN9uY9Y2WVpS5ny0WX3IutB2FJKnk-Jj2yVvsxS82S7WFK_ZRWPWkW5-55h9Ps0-pi98_vb8On2ccysKSLwQVWUbpZypyKGc1CRdXRckSoUWkZwytXIIJZDKjSsdOgmVzVWDWObUyDG7G3r7f752FJNetbuw7U9qCajyXEwk9i4xuGxoYwzU6C74jQkHjaCPuPSAS_e49AmX3vchOYRib94uKPxV_5P6AVRDbjY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3015442631</pqid></control><display><type>article</type><title>Some characterizations of the disc by properties of isoptic triangles</title><source>SpringerLink Journals</source><creator>Ayala-Figueroa, Rafael I. ; González-García, Iván ; Jerónimo-Castro, Jesús ; Jimenez-Lopez, Francisco G.</creator><creatorcontrib>Ayala-Figueroa, Rafael I. ; González-García, Iván ; Jerónimo-Castro, Jesús ; Jimenez-Lopez, Francisco G.</creatorcontrib><description>The main result in this article is the following: Let K ⊂ R 2 be a regular convex body and let α , β , θ , be three angles such that K has α -chords, β -chords, and θ -chords of constant length and α + β + θ = π , then K is a disc. We also prove another characterization of the disc with respect to properties of its ( α , β , θ ) -circumscribed triangles.</description><identifier>ISSN: 0001-9054</identifier><identifier>EISSN: 1420-8903</identifier><identifier>DOI: 10.1007/s00010-023-00983-w</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Combinatorics ; Mathematics ; Mathematics and Statistics ; Triangles</subject><ispartof>Aequationes mathematicae, 2024-04, Vol.98 (2), p.591-602</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-7299cf55da9ed136be3dbb7e2851c11ed5ab5d1080e54ad8d1d309c45f1184ef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00010-023-00983-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00010-023-00983-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Ayala-Figueroa, Rafael I.</creatorcontrib><creatorcontrib>González-García, Iván</creatorcontrib><creatorcontrib>Jerónimo-Castro, Jesús</creatorcontrib><creatorcontrib>Jimenez-Lopez, Francisco G.</creatorcontrib><title>Some characterizations of the disc by properties of isoptic triangles</title><title>Aequationes mathematicae</title><addtitle>Aequat. Math</addtitle><description>The main result in this article is the following: Let K ⊂ R 2 be a regular convex body and let α , β , θ , be three angles such that K has α -chords, β -chords, and θ -chords of constant length and α + β + θ = π , then K is a disc. We also prove another characterization of the disc with respect to properties of its ( α , β , θ ) -circumscribed triangles.</description><subject>Analysis</subject><subject>Combinatorics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Triangles</subject><issn>0001-9054</issn><issn>1420-8903</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wNOC5-hMsunuHqXUDyh4UM8hm8y2KW13TVJK_fVuu4I3T8PwfszwMHaLcI8AxUMEAAQOQnKAqpR8f8ZGmAvgZQXynI2OOq9A5ZfsKsZVv4mikCM2e283lNmlCcYmCv7bJN9uY9Y2WVpS5ny0WX3IutB2FJKnk-Jj2yVvsxS82S7WFK_ZRWPWkW5-55h9Ps0-pi98_vb8On2ccysKSLwQVWUbpZypyKGc1CRdXRckSoUWkZwytXIIJZDKjSsdOgmVzVWDWObUyDG7G3r7f752FJNetbuw7U9qCajyXEwk9i4xuGxoYwzU6C74jQkHjaCPuPSAS_e49AmX3vchOYRib94uKPxV_5P6AVRDbjY</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Ayala-Figueroa, Rafael I.</creator><creator>González-García, Iván</creator><creator>Jerónimo-Castro, Jesús</creator><creator>Jimenez-Lopez, Francisco G.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20240401</creationdate><title>Some characterizations of the disc by properties of isoptic triangles</title><author>Ayala-Figueroa, Rafael I. ; González-García, Iván ; Jerónimo-Castro, Jesús ; Jimenez-Lopez, Francisco G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-7299cf55da9ed136be3dbb7e2851c11ed5ab5d1080e54ad8d1d309c45f1184ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Analysis</topic><topic>Combinatorics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Triangles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ayala-Figueroa, Rafael I.</creatorcontrib><creatorcontrib>González-García, Iván</creatorcontrib><creatorcontrib>Jerónimo-Castro, Jesús</creatorcontrib><creatorcontrib>Jimenez-Lopez, Francisco G.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Aequationes mathematicae</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ayala-Figueroa, Rafael I.</au><au>González-García, Iván</au><au>Jerónimo-Castro, Jesús</au><au>Jimenez-Lopez, Francisco G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some characterizations of the disc by properties of isoptic triangles</atitle><jtitle>Aequationes mathematicae</jtitle><stitle>Aequat. Math</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>98</volume><issue>2</issue><spage>591</spage><epage>602</epage><pages>591-602</pages><issn>0001-9054</issn><eissn>1420-8903</eissn><abstract>The main result in this article is the following: Let K ⊂ R 2 be a regular convex body and let α , β , θ , be three angles such that K has α -chords, β -chords, and θ -chords of constant length and α + β + θ = π , then K is a disc. We also prove another characterization of the disc with respect to properties of its ( α , β , θ ) -circumscribed triangles.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00010-023-00983-w</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-9054
ispartof Aequationes mathematicae, 2024-04, Vol.98 (2), p.591-602
issn 0001-9054
1420-8903
language eng
recordid cdi_proquest_journals_3015442631
source SpringerLink Journals
subjects Analysis
Combinatorics
Mathematics
Mathematics and Statistics
Triangles
title Some characterizations of the disc by properties of isoptic triangles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T11%3A09%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20characterizations%20of%20the%20disc%20by%20properties%20of%20isoptic%20triangles&rft.jtitle=Aequationes%20mathematicae&rft.au=Ayala-Figueroa,%20Rafael%20I.&rft.date=2024-04-01&rft.volume=98&rft.issue=2&rft.spage=591&rft.epage=602&rft.pages=591-602&rft.issn=0001-9054&rft.eissn=1420-8903&rft_id=info:doi/10.1007/s00010-023-00983-w&rft_dat=%3Cproquest_cross%3E3015442631%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3015442631&rft_id=info:pmid/&rfr_iscdi=true