Modified Patterson–Wiedemann construction

The Patterson–Wiedemann (PW) construction, which is defined for an odd number n of variables with n being the product of two distinct prime numbers p and q , can be interpreted as idempotent functions which are represented by the ( d ,  r )-interleaved sequences formed by all-zero and all-one column...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Designs, codes, and cryptography codes, and cryptography, 2024-03, Vol.92 (3), p.653-666
1. Verfasser: Kavut, Selçuk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 666
container_issue 3
container_start_page 653
container_title Designs, codes, and cryptography
container_volume 92
creator Kavut, Selçuk
description The Patterson–Wiedemann (PW) construction, which is defined for an odd number n of variables with n being the product of two distinct prime numbers p and q , can be interpreted as idempotent functions which are represented by the ( d ,  r )-interleaved sequences formed by all-zero and all-one columns, where r = ( 2 p - 1 ) ( 2 q - 1 ) and d = ( 2 n - 1 ) r . We here study a modified form of the PW construction, which only requires 2 n - 1 ( = d r ) be a composite number, by relaxing the constraint on the values of d and r . We first elaborate on the case n = 15 and consider the functions corresponding to the (217, 151)-interleaved sequences. Taking into account those satisfying f ( α ) = f ( α 2 k ) for all α ∈ F 2 n in this scenario, where k is a fixed divisor of n , we obtain Boolean functions with nonlinearity 16268 exceeding the bent concatenation bound. Then we extend our study for the case n = 11 and obtain Boolean functions with nonlinearity 996 represented by the (89, 23)-interleaved sequences, which equals the best known nonlinearity result. In the process, we show that there is the possibility to exceed the best known nonlinearities using the functions corresponding to those interleaved sequences.
doi_str_mv 10.1007/s10623-023-01248-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3015442515</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3015442515</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-8a56789e31fdb1f1755028e8b82924101f299f41e0fdce75f6341cbed50084073</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKsv4KrgUqL33iSTzFKKf1DRheIyTGcSmWKTmkwX3fkOvqFP4gwjuHNxOHD5zrlwGDtFuEAAfZkRChIcBiFJw3d7bIJKC66VKfbZBEpSHIHokB3lvAIAFEATdv4Qm9a3rpk9VV3nUo7h-_PrtT-4dRXCrI4hd2lbd20Mx-zAV-_Znfz6lL3cXD_P7_ji8fZ-frXgNWnouKlUoU3pBPpmiR61UkDGmaWhkiQCeipLL9GBb2qnlS-ExHrpGgVgJGgxZWdj7ybFj63LnV3FbQr9SysAlZSkUPUUjVSdYs7JebtJ7bpKO4tgh1HsOIqFQcModteHxBjKPRzeXPqr_if1A9pbZIU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3015442515</pqid></control><display><type>article</type><title>Modified Patterson–Wiedemann construction</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kavut, Selçuk</creator><creatorcontrib>Kavut, Selçuk</creatorcontrib><description>The Patterson–Wiedemann (PW) construction, which is defined for an odd number n of variables with n being the product of two distinct prime numbers p and q , can be interpreted as idempotent functions which are represented by the ( d ,  r )-interleaved sequences formed by all-zero and all-one columns, where r = ( 2 p - 1 ) ( 2 q - 1 ) and d = ( 2 n - 1 ) r . We here study a modified form of the PW construction, which only requires 2 n - 1 ( = d r ) be a composite number, by relaxing the constraint on the values of d and r . We first elaborate on the case n = 15 and consider the functions corresponding to the (217, 151)-interleaved sequences. Taking into account those satisfying f ( α ) = f ( α 2 k ) for all α ∈ F 2 n in this scenario, where k is a fixed divisor of n , we obtain Boolean functions with nonlinearity 16268 exceeding the bent concatenation bound. Then we extend our study for the case n = 11 and obtain Boolean functions with nonlinearity 996 represented by the (89, 23)-interleaved sequences, which equals the best known nonlinearity result. In the process, we show that there is the possibility to exceed the best known nonlinearities using the functions corresponding to those interleaved sequences.</description><identifier>ISSN: 0925-1022</identifier><identifier>EISSN: 1573-7586</identifier><identifier>DOI: 10.1007/s10623-023-01248-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Boolean ; Boolean functions ; Coding and Cryptography 2022 ; Coding and Information Theory ; Computer Science ; Cryptology ; Discrete Mathematics in Computer Science ; Nonlinearity ; Prime numbers</subject><ispartof>Designs, codes, and cryptography, 2024-03, Vol.92 (3), p.653-666</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-8a56789e31fdb1f1755028e8b82924101f299f41e0fdce75f6341cbed50084073</cites><orcidid>0000-0002-9460-1418</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10623-023-01248-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10623-023-01248-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kavut, Selçuk</creatorcontrib><title>Modified Patterson–Wiedemann construction</title><title>Designs, codes, and cryptography</title><addtitle>Des. Codes Cryptogr</addtitle><description>The Patterson–Wiedemann (PW) construction, which is defined for an odd number n of variables with n being the product of two distinct prime numbers p and q , can be interpreted as idempotent functions which are represented by the ( d ,  r )-interleaved sequences formed by all-zero and all-one columns, where r = ( 2 p - 1 ) ( 2 q - 1 ) and d = ( 2 n - 1 ) r . We here study a modified form of the PW construction, which only requires 2 n - 1 ( = d r ) be a composite number, by relaxing the constraint on the values of d and r . We first elaborate on the case n = 15 and consider the functions corresponding to the (217, 151)-interleaved sequences. Taking into account those satisfying f ( α ) = f ( α 2 k ) for all α ∈ F 2 n in this scenario, where k is a fixed divisor of n , we obtain Boolean functions with nonlinearity 16268 exceeding the bent concatenation bound. Then we extend our study for the case n = 11 and obtain Boolean functions with nonlinearity 996 represented by the (89, 23)-interleaved sequences, which equals the best known nonlinearity result. In the process, we show that there is the possibility to exceed the best known nonlinearities using the functions corresponding to those interleaved sequences.</description><subject>Boolean</subject><subject>Boolean functions</subject><subject>Coding and Cryptography 2022</subject><subject>Coding and Information Theory</subject><subject>Computer Science</subject><subject>Cryptology</subject><subject>Discrete Mathematics in Computer Science</subject><subject>Nonlinearity</subject><subject>Prime numbers</subject><issn>0925-1022</issn><issn>1573-7586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEUhYMoWKsv4KrgUqL33iSTzFKKf1DRheIyTGcSmWKTmkwX3fkOvqFP4gwjuHNxOHD5zrlwGDtFuEAAfZkRChIcBiFJw3d7bIJKC66VKfbZBEpSHIHokB3lvAIAFEATdv4Qm9a3rpk9VV3nUo7h-_PrtT-4dRXCrI4hd2lbd20Mx-zAV-_Znfz6lL3cXD_P7_ji8fZ-frXgNWnouKlUoU3pBPpmiR61UkDGmaWhkiQCeipLL9GBb2qnlS-ExHrpGgVgJGgxZWdj7ybFj63LnV3FbQr9SysAlZSkUPUUjVSdYs7JebtJ7bpKO4tgh1HsOIqFQcModteHxBjKPRzeXPqr_if1A9pbZIU</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Kavut, Selçuk</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9460-1418</orcidid></search><sort><creationdate>20240301</creationdate><title>Modified Patterson–Wiedemann construction</title><author>Kavut, Selçuk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-8a56789e31fdb1f1755028e8b82924101f299f41e0fdce75f6341cbed50084073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Boolean</topic><topic>Boolean functions</topic><topic>Coding and Cryptography 2022</topic><topic>Coding and Information Theory</topic><topic>Computer Science</topic><topic>Cryptology</topic><topic>Discrete Mathematics in Computer Science</topic><topic>Nonlinearity</topic><topic>Prime numbers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kavut, Selçuk</creatorcontrib><collection>CrossRef</collection><jtitle>Designs, codes, and cryptography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kavut, Selçuk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modified Patterson–Wiedemann construction</atitle><jtitle>Designs, codes, and cryptography</jtitle><stitle>Des. Codes Cryptogr</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>92</volume><issue>3</issue><spage>653</spage><epage>666</epage><pages>653-666</pages><issn>0925-1022</issn><eissn>1573-7586</eissn><abstract>The Patterson–Wiedemann (PW) construction, which is defined for an odd number n of variables with n being the product of two distinct prime numbers p and q , can be interpreted as idempotent functions which are represented by the ( d ,  r )-interleaved sequences formed by all-zero and all-one columns, where r = ( 2 p - 1 ) ( 2 q - 1 ) and d = ( 2 n - 1 ) r . We here study a modified form of the PW construction, which only requires 2 n - 1 ( = d r ) be a composite number, by relaxing the constraint on the values of d and r . We first elaborate on the case n = 15 and consider the functions corresponding to the (217, 151)-interleaved sequences. Taking into account those satisfying f ( α ) = f ( α 2 k ) for all α ∈ F 2 n in this scenario, where k is a fixed divisor of n , we obtain Boolean functions with nonlinearity 16268 exceeding the bent concatenation bound. Then we extend our study for the case n = 11 and obtain Boolean functions with nonlinearity 996 represented by the (89, 23)-interleaved sequences, which equals the best known nonlinearity result. In the process, we show that there is the possibility to exceed the best known nonlinearities using the functions corresponding to those interleaved sequences.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10623-023-01248-y</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-9460-1418</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0925-1022
ispartof Designs, codes, and cryptography, 2024-03, Vol.92 (3), p.653-666
issn 0925-1022
1573-7586
language eng
recordid cdi_proquest_journals_3015442515
source SpringerLink Journals - AutoHoldings
subjects Boolean
Boolean functions
Coding and Cryptography 2022
Coding and Information Theory
Computer Science
Cryptology
Discrete Mathematics in Computer Science
Nonlinearity
Prime numbers
title Modified Patterson–Wiedemann construction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A42%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modified%20Patterson%E2%80%93Wiedemann%20construction&rft.jtitle=Designs,%20codes,%20and%20cryptography&rft.au=Kavut,%20Sel%C3%A7uk&rft.date=2024-03-01&rft.volume=92&rft.issue=3&rft.spage=653&rft.epage=666&rft.pages=653-666&rft.issn=0925-1022&rft.eissn=1573-7586&rft_id=info:doi/10.1007/s10623-023-01248-y&rft_dat=%3Cproquest_cross%3E3015442515%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3015442515&rft_id=info:pmid/&rfr_iscdi=true