Orbital Stability of Standing Waves for the Sobolev Critical Schrödinger Equation with Inverse-Power Potential

In this paper, we study the Cauchy problem for the nonlinear Schrödinger equation with focusing inverse-power potential and the Sobolev critical nonlinearity. By considering the corresponding local minimization problem, we show that the existence of ground state solutions. Then, we prove that the so...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Qualitative theory of dynamical systems 2024-09, Vol.23 (4), Article 147
Hauptverfasser: Cao, Leijin, Feng, Binhua, Mo, Yichun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title Qualitative theory of dynamical systems
container_volume 23
creator Cao, Leijin
Feng, Binhua
Mo, Yichun
description In this paper, we study the Cauchy problem for the nonlinear Schrödinger equation with focusing inverse-power potential and the Sobolev critical nonlinearity. By considering the corresponding local minimization problem, we show that the existence of ground state solutions. Then, we prove that the solution of this equation exists globally when the initial data φ sufficiently close to the ground states. Based on these results, we show that the set of ground states is orbitally stable.
doi_str_mv 10.1007/s12346-024-00980-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3015442481</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3015442481</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-54814b14a4bef1483f4822efae366d020b1652d6ba649f6f7286a914bb0bea2e3</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsv4CrgOprbZKZLKVULhQpVXIZkmtiUcdImaUtfzBfwxcw4gjtX5xzO_53LD8A1wbcE4_IuEsq4QJhyhPGowqg8AQMiBEWsGNHTnBdlgQou8Dm4iHGNsaAlowPg50G7pBq4SEq7xqUj9LYr2qVr3-Gb2psIrQ8wrQxceO0bs4fj4JKrO6heha_PTmkCnGx3KjnfwoNLKzht9yZEg579IfeefTJtcqq5BGdWNdFc_cYheH2YvIyf0Gz-OB3fz1BNS5zypRXhmnDFtbGEV8zyilJjlWFCLDHFmoiCLoVWgo-ssCWthBplRGNtFDVsCG76uZvgtzsTk1z7XWjzSskwKTineUNW0V5VBx9jMFZugvtQ4SgJlp2xsjdWZmPlj7GyzBDroZjF3ed_o_-hvgG0xX0F</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3015442481</pqid></control><display><type>article</type><title>Orbital Stability of Standing Waves for the Sobolev Critical Schrödinger Equation with Inverse-Power Potential</title><source>SpringerLink Journals - AutoHoldings</source><creator>Cao, Leijin ; Feng, Binhua ; Mo, Yichun</creator><creatorcontrib>Cao, Leijin ; Feng, Binhua ; Mo, Yichun</creatorcontrib><description>In this paper, we study the Cauchy problem for the nonlinear Schrödinger equation with focusing inverse-power potential and the Sobolev critical nonlinearity. By considering the corresponding local minimization problem, we show that the existence of ground state solutions. Then, we prove that the solution of this equation exists globally when the initial data φ sufficiently close to the ground states. Based on these results, we show that the set of ground states is orbitally stable.</description><identifier>ISSN: 1575-5460</identifier><identifier>EISSN: 1662-3592</identifier><identifier>DOI: 10.1007/s12346-024-00980-7</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Cauchy problems ; Difference and Functional Equations ; Dynamical Systems and Ergodic Theory ; Ground state ; Mathematics ; Mathematics and Statistics ; Nonlinearity ; Orbital stability ; Schrodinger equation ; Standing waves</subject><ispartof>Qualitative theory of dynamical systems, 2024-09, Vol.23 (4), Article 147</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-54814b14a4bef1483f4822efae366d020b1652d6ba649f6f7286a914bb0bea2e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12346-024-00980-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12346-024-00980-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Cao, Leijin</creatorcontrib><creatorcontrib>Feng, Binhua</creatorcontrib><creatorcontrib>Mo, Yichun</creatorcontrib><title>Orbital Stability of Standing Waves for the Sobolev Critical Schrödinger Equation with Inverse-Power Potential</title><title>Qualitative theory of dynamical systems</title><addtitle>Qual. Theory Dyn. Syst</addtitle><description>In this paper, we study the Cauchy problem for the nonlinear Schrödinger equation with focusing inverse-power potential and the Sobolev critical nonlinearity. By considering the corresponding local minimization problem, we show that the existence of ground state solutions. Then, we prove that the solution of this equation exists globally when the initial data φ sufficiently close to the ground states. Based on these results, we show that the set of ground states is orbitally stable.</description><subject>Cauchy problems</subject><subject>Difference and Functional Equations</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Ground state</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nonlinearity</subject><subject>Orbital stability</subject><subject>Schrodinger equation</subject><subject>Standing waves</subject><issn>1575-5460</issn><issn>1662-3592</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKsv4CrgOprbZKZLKVULhQpVXIZkmtiUcdImaUtfzBfwxcw4gjtX5xzO_53LD8A1wbcE4_IuEsq4QJhyhPGowqg8AQMiBEWsGNHTnBdlgQou8Dm4iHGNsaAlowPg50G7pBq4SEq7xqUj9LYr2qVr3-Gb2psIrQ8wrQxceO0bs4fj4JKrO6heha_PTmkCnGx3KjnfwoNLKzht9yZEg579IfeefTJtcqq5BGdWNdFc_cYheH2YvIyf0Gz-OB3fz1BNS5zypRXhmnDFtbGEV8zyilJjlWFCLDHFmoiCLoVWgo-ssCWthBplRGNtFDVsCG76uZvgtzsTk1z7XWjzSskwKTineUNW0V5VBx9jMFZugvtQ4SgJlp2xsjdWZmPlj7GyzBDroZjF3ed_o_-hvgG0xX0F</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Cao, Leijin</creator><creator>Feng, Binhua</creator><creator>Mo, Yichun</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240901</creationdate><title>Orbital Stability of Standing Waves for the Sobolev Critical Schrödinger Equation with Inverse-Power Potential</title><author>Cao, Leijin ; Feng, Binhua ; Mo, Yichun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-54814b14a4bef1483f4822efae366d020b1652d6ba649f6f7286a914bb0bea2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cauchy problems</topic><topic>Difference and Functional Equations</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Ground state</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nonlinearity</topic><topic>Orbital stability</topic><topic>Schrodinger equation</topic><topic>Standing waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Leijin</creatorcontrib><creatorcontrib>Feng, Binhua</creatorcontrib><creatorcontrib>Mo, Yichun</creatorcontrib><collection>CrossRef</collection><jtitle>Qualitative theory of dynamical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Leijin</au><au>Feng, Binhua</au><au>Mo, Yichun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Orbital Stability of Standing Waves for the Sobolev Critical Schrödinger Equation with Inverse-Power Potential</atitle><jtitle>Qualitative theory of dynamical systems</jtitle><stitle>Qual. Theory Dyn. Syst</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>23</volume><issue>4</issue><artnum>147</artnum><issn>1575-5460</issn><eissn>1662-3592</eissn><abstract>In this paper, we study the Cauchy problem for the nonlinear Schrödinger equation with focusing inverse-power potential and the Sobolev critical nonlinearity. By considering the corresponding local minimization problem, we show that the existence of ground state solutions. Then, we prove that the solution of this equation exists globally when the initial data φ sufficiently close to the ground states. Based on these results, we show that the set of ground states is orbitally stable.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s12346-024-00980-7</doi></addata></record>
fulltext fulltext
identifier ISSN: 1575-5460
ispartof Qualitative theory of dynamical systems, 2024-09, Vol.23 (4), Article 147
issn 1575-5460
1662-3592
language eng
recordid cdi_proquest_journals_3015442481
source SpringerLink Journals - AutoHoldings
subjects Cauchy problems
Difference and Functional Equations
Dynamical Systems and Ergodic Theory
Ground state
Mathematics
Mathematics and Statistics
Nonlinearity
Orbital stability
Schrodinger equation
Standing waves
title Orbital Stability of Standing Waves for the Sobolev Critical Schrödinger Equation with Inverse-Power Potential
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T15%3A58%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Orbital%20Stability%20of%20Standing%20Waves%20for%20the%20Sobolev%20Critical%20Schr%C3%B6dinger%20Equation%20with%20Inverse-Power%20Potential&rft.jtitle=Qualitative%20theory%20of%20dynamical%20systems&rft.au=Cao,%20Leijin&rft.date=2024-09-01&rft.volume=23&rft.issue=4&rft.artnum=147&rft.issn=1575-5460&rft.eissn=1662-3592&rft_id=info:doi/10.1007/s12346-024-00980-7&rft_dat=%3Cproquest_cross%3E3015442481%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3015442481&rft_id=info:pmid/&rfr_iscdi=true