Estimating Galaxy Parameters with Self-Organizing Maps and the Effect of Missing Data
The current and upcoming large data volume galaxy surveys require the use of machine learning techniques to maximize their scientific return. This study explores the use of Self-Organizing Maps (SOMs) to estimate galaxy parameters with a focus on handling cases of missing data and providing realisti...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-03 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | La Torre, Valentina Sajina, Anna Goulding, Andy D Marchesini, Danilo Bezanson, Rachel Pearl, Alan N Laerte Sodré Jr |
description | The current and upcoming large data volume galaxy surveys require the use of machine learning techniques to maximize their scientific return. This study explores the use of Self-Organizing Maps (SOMs) to estimate galaxy parameters with a focus on handling cases of missing data and providing realistic probability distribution functions for the parameters. We train a SOM with a simulated mass-limited lightcone assuming a ugrizYJHKs+IRAC dataset, mimicking the Hyper Suprime-Cam (HSC) Deep joint dataset. For parameter estimation, we derive SOM likelihood surfaces considering photometric errors to derive total (statistical and systematic) uncertainties. We explore the effects of missing data including which bands are particular critical to the accuracy of the derived parameters. We demonstrate that the parameter recovery is significantly better when the missing bands are "filled-in" rather than if they are completely omitted. We propose a practical method for such recovery of missing data. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3015044590</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3015044590</sourcerecordid><originalsourceid>FETCH-proquest_journals_30150445903</originalsourceid><addsrcrecordid>eNqNyskKwjAUQNEgCBbtPzxwXUiT1mGtVTdFQV2XhyZtSifzUhy-XgU_wNVdnDtgnpAyDBaRECPmE5WcczGbiziWHjsn5EyNzjQ5bLHCxxMOaLFWTlmCu3EFHFWlg73NsTGv75ZiR4DNFVyhINFaXRy0GlJD9OU1OpywocaKlP_rmE03yWm1Czrb3npFLivb3jYfyiQPYx5F8ZLL_643f21ADQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3015044590</pqid></control><display><type>article</type><title>Estimating Galaxy Parameters with Self-Organizing Maps and the Effect of Missing Data</title><source>Free E- Journals</source><creator>La Torre, Valentina ; Sajina, Anna ; Goulding, Andy D ; Marchesini, Danilo ; Bezanson, Rachel ; Pearl, Alan N ; Laerte Sodré Jr</creator><creatorcontrib>La Torre, Valentina ; Sajina, Anna ; Goulding, Andy D ; Marchesini, Danilo ; Bezanson, Rachel ; Pearl, Alan N ; Laerte Sodré Jr</creatorcontrib><description>The current and upcoming large data volume galaxy surveys require the use of machine learning techniques to maximize their scientific return. This study explores the use of Self-Organizing Maps (SOMs) to estimate galaxy parameters with a focus on handling cases of missing data and providing realistic probability distribution functions for the parameters. We train a SOM with a simulated mass-limited lightcone assuming a ugrizYJHKs+IRAC dataset, mimicking the Hyper Suprime-Cam (HSC) Deep joint dataset. For parameter estimation, we derive SOM likelihood surfaces considering photometric errors to derive total (statistical and systematic) uncertainties. We explore the effects of missing data including which bands are particular critical to the accuracy of the derived parameters. We demonstrate that the parameter recovery is significantly better when the missing bands are "filled-in" rather than if they are completely omitted. We propose a practical method for such recovery of missing data.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Data recovery ; Datasets ; Distribution functions ; Galaxies ; Machine learning ; Missing data ; Parameter estimation ; Probability distribution functions ; Self organizing maps ; Statistical analysis</subject><ispartof>arXiv.org, 2024-03</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>La Torre, Valentina</creatorcontrib><creatorcontrib>Sajina, Anna</creatorcontrib><creatorcontrib>Goulding, Andy D</creatorcontrib><creatorcontrib>Marchesini, Danilo</creatorcontrib><creatorcontrib>Bezanson, Rachel</creatorcontrib><creatorcontrib>Pearl, Alan N</creatorcontrib><creatorcontrib>Laerte Sodré Jr</creatorcontrib><title>Estimating Galaxy Parameters with Self-Organizing Maps and the Effect of Missing Data</title><title>arXiv.org</title><description>The current and upcoming large data volume galaxy surveys require the use of machine learning techniques to maximize their scientific return. This study explores the use of Self-Organizing Maps (SOMs) to estimate galaxy parameters with a focus on handling cases of missing data and providing realistic probability distribution functions for the parameters. We train a SOM with a simulated mass-limited lightcone assuming a ugrizYJHKs+IRAC dataset, mimicking the Hyper Suprime-Cam (HSC) Deep joint dataset. For parameter estimation, we derive SOM likelihood surfaces considering photometric errors to derive total (statistical and systematic) uncertainties. We explore the effects of missing data including which bands are particular critical to the accuracy of the derived parameters. We demonstrate that the parameter recovery is significantly better when the missing bands are "filled-in" rather than if they are completely omitted. We propose a practical method for such recovery of missing data.</description><subject>Data recovery</subject><subject>Datasets</subject><subject>Distribution functions</subject><subject>Galaxies</subject><subject>Machine learning</subject><subject>Missing data</subject><subject>Parameter estimation</subject><subject>Probability distribution functions</subject><subject>Self organizing maps</subject><subject>Statistical analysis</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNyskKwjAUQNEgCBbtPzxwXUiT1mGtVTdFQV2XhyZtSifzUhy-XgU_wNVdnDtgnpAyDBaRECPmE5WcczGbiziWHjsn5EyNzjQ5bLHCxxMOaLFWTlmCu3EFHFWlg73NsTGv75ZiR4DNFVyhINFaXRy0GlJD9OU1OpywocaKlP_rmE03yWm1Czrb3npFLivb3jYfyiQPYx5F8ZLL_643f21ADQ</recordid><startdate>20240327</startdate><enddate>20240327</enddate><creator>La Torre, Valentina</creator><creator>Sajina, Anna</creator><creator>Goulding, Andy D</creator><creator>Marchesini, Danilo</creator><creator>Bezanson, Rachel</creator><creator>Pearl, Alan N</creator><creator>Laerte Sodré Jr</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240327</creationdate><title>Estimating Galaxy Parameters with Self-Organizing Maps and the Effect of Missing Data</title><author>La Torre, Valentina ; Sajina, Anna ; Goulding, Andy D ; Marchesini, Danilo ; Bezanson, Rachel ; Pearl, Alan N ; Laerte Sodré Jr</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30150445903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Data recovery</topic><topic>Datasets</topic><topic>Distribution functions</topic><topic>Galaxies</topic><topic>Machine learning</topic><topic>Missing data</topic><topic>Parameter estimation</topic><topic>Probability distribution functions</topic><topic>Self organizing maps</topic><topic>Statistical analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>La Torre, Valentina</creatorcontrib><creatorcontrib>Sajina, Anna</creatorcontrib><creatorcontrib>Goulding, Andy D</creatorcontrib><creatorcontrib>Marchesini, Danilo</creatorcontrib><creatorcontrib>Bezanson, Rachel</creatorcontrib><creatorcontrib>Pearl, Alan N</creatorcontrib><creatorcontrib>Laerte Sodré Jr</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>La Torre, Valentina</au><au>Sajina, Anna</au><au>Goulding, Andy D</au><au>Marchesini, Danilo</au><au>Bezanson, Rachel</au><au>Pearl, Alan N</au><au>Laerte Sodré Jr</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Estimating Galaxy Parameters with Self-Organizing Maps and the Effect of Missing Data</atitle><jtitle>arXiv.org</jtitle><date>2024-03-27</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>The current and upcoming large data volume galaxy surveys require the use of machine learning techniques to maximize their scientific return. This study explores the use of Self-Organizing Maps (SOMs) to estimate galaxy parameters with a focus on handling cases of missing data and providing realistic probability distribution functions for the parameters. We train a SOM with a simulated mass-limited lightcone assuming a ugrizYJHKs+IRAC dataset, mimicking the Hyper Suprime-Cam (HSC) Deep joint dataset. For parameter estimation, we derive SOM likelihood surfaces considering photometric errors to derive total (statistical and systematic) uncertainties. We explore the effects of missing data including which bands are particular critical to the accuracy of the derived parameters. We demonstrate that the parameter recovery is significantly better when the missing bands are "filled-in" rather than if they are completely omitted. We propose a practical method for such recovery of missing data.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3015044590 |
source | Free E- Journals |
subjects | Data recovery Datasets Distribution functions Galaxies Machine learning Missing data Parameter estimation Probability distribution functions Self organizing maps Statistical analysis |
title | Estimating Galaxy Parameters with Self-Organizing Maps and the Effect of Missing Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T23%3A14%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Estimating%20Galaxy%20Parameters%20with%20Self-Organizing%20Maps%20and%20the%20Effect%20of%20Missing%20Data&rft.jtitle=arXiv.org&rft.au=La%20Torre,%20Valentina&rft.date=2024-03-27&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3015044590%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3015044590&rft_id=info:pmid/&rfr_iscdi=true |