Optimal Fault Detection for Stochastic Linear Time-Varying Systems by [Formula Omitted] Test
This article is concerned with the problem of fault detection (FD) for stochastic linear time-varying systems. The unified framework of the residual generator is constructed by using all currently available inputs and outputs, which can describe the existing observer-based methods and the parity spa...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 2024-01, Vol.69 (4), p.2294 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | 2294 |
container_title | IEEE transactions on automatic control |
container_volume | 69 |
creator | Niu, Yichun Li, Sheng Gao, Ming Zhou, Donghua |
description | This article is concerned with the problem of fault detection (FD) for stochastic linear time-varying systems. The unified framework of the residual generator is constructed by using all currently available inputs and outputs, which can describe the existing observer-based methods and the parity space method. Then, the [Formula Omitted] test is introduced to evaluate the multivariate residual. In this article, the fault detector is said to be optimal if the missed detection rate (MDR) is minimal under a given false alarm rate. In theory, the relationship between the MDR and the residual parameter matrix is analyzed, which reveals how the dimension of a residual affects the MDR for the first time. When the fault amplitude is known, the optimal fault detector is derived, which is infeasible in practical applications. Next, a new recursive and feasible FD method is presented, where the residual parameter matrix gradually tends to the theoretically optimal one. Finally, an illustrative example is provided to demonstrate the feasibility and superiority of the obtained algorithm. |
doi_str_mv | 10.1109/TAC.2023.3329528 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3015037537</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3015037537</sourcerecordid><originalsourceid>FETCH-proquest_journals_30150375373</originalsourceid><addsrcrecordid>eNqNir1uwjAYAC1UJFLKzvhJnRP8E0MyVmmjDpUYiLq0KDLBgFEcp_aXIW_fDH2ATqfTHSFrRhPGaL6pXoqEUy4SIXgueTYjEZMyi7nk4oFElLIsznm2XZDHEO6TbtOUReR736OxqoVSDS3Cq0bdoHEdXJyHA7rmpgKaBj5Mp5WHylgdfyo_mu4KhzGgtgFOI3yVztuhVbC3BlGfj1DpgE9kflFt0Ks_Lslz-VYV73Hv3c8wDfXdDb6bUi0ok1TspNiJ_12_YJNJbQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3015037537</pqid></control><display><type>article</type><title>Optimal Fault Detection for Stochastic Linear Time-Varying Systems by [Formula Omitted] Test</title><source>IEEE Electronic Library (IEL)</source><creator>Niu, Yichun ; Li, Sheng ; Gao, Ming ; Zhou, Donghua</creator><creatorcontrib>Niu, Yichun ; Li, Sheng ; Gao, Ming ; Zhou, Donghua</creatorcontrib><description>This article is concerned with the problem of fault detection (FD) for stochastic linear time-varying systems. The unified framework of the residual generator is constructed by using all currently available inputs and outputs, which can describe the existing observer-based methods and the parity space method. Then, the [Formula Omitted] test is introduced to evaluate the multivariate residual. In this article, the fault detector is said to be optimal if the missed detection rate (MDR) is minimal under a given false alarm rate. In theory, the relationship between the MDR and the residual parameter matrix is analyzed, which reveals how the dimension of a residual affects the MDR for the first time. When the fault amplitude is known, the optimal fault detector is derived, which is infeasible in practical applications. Next, a new recursive and feasible FD method is presented, where the residual parameter matrix gradually tends to the theoretically optimal one. Finally, an illustrative example is provided to demonstrate the feasibility and superiority of the obtained algorithm.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2023.3329528</identifier><language>eng</language><publisher>New York: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</publisher><subject>Algorithms ; False alarms ; Fault detection ; Feasibility ; Parameters</subject><ispartof>IEEE transactions on automatic control, 2024-01, Vol.69 (4), p.2294</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Niu, Yichun</creatorcontrib><creatorcontrib>Li, Sheng</creatorcontrib><creatorcontrib>Gao, Ming</creatorcontrib><creatorcontrib>Zhou, Donghua</creatorcontrib><title>Optimal Fault Detection for Stochastic Linear Time-Varying Systems by [Formula Omitted] Test</title><title>IEEE transactions on automatic control</title><description>This article is concerned with the problem of fault detection (FD) for stochastic linear time-varying systems. The unified framework of the residual generator is constructed by using all currently available inputs and outputs, which can describe the existing observer-based methods and the parity space method. Then, the [Formula Omitted] test is introduced to evaluate the multivariate residual. In this article, the fault detector is said to be optimal if the missed detection rate (MDR) is minimal under a given false alarm rate. In theory, the relationship between the MDR and the residual parameter matrix is analyzed, which reveals how the dimension of a residual affects the MDR for the first time. When the fault amplitude is known, the optimal fault detector is derived, which is infeasible in practical applications. Next, a new recursive and feasible FD method is presented, where the residual parameter matrix gradually tends to the theoretically optimal one. Finally, an illustrative example is provided to demonstrate the feasibility and superiority of the obtained algorithm.</description><subject>Algorithms</subject><subject>False alarms</subject><subject>Fault detection</subject><subject>Feasibility</subject><subject>Parameters</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqNir1uwjAYAC1UJFLKzvhJnRP8E0MyVmmjDpUYiLq0KDLBgFEcp_aXIW_fDH2ATqfTHSFrRhPGaL6pXoqEUy4SIXgueTYjEZMyi7nk4oFElLIsznm2XZDHEO6TbtOUReR736OxqoVSDS3Cq0bdoHEdXJyHA7rmpgKaBj5Mp5WHylgdfyo_mu4KhzGgtgFOI3yVztuhVbC3BlGfj1DpgE9kflFt0Ks_Lslz-VYV73Hv3c8wDfXdDb6bUi0ok1TspNiJ_12_YJNJbQ</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Niu, Yichun</creator><creator>Li, Sheng</creator><creator>Gao, Ming</creator><creator>Zhou, Donghua</creator><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20240101</creationdate><title>Optimal Fault Detection for Stochastic Linear Time-Varying Systems by [Formula Omitted] Test</title><author>Niu, Yichun ; Li, Sheng ; Gao, Ming ; Zhou, Donghua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30150375373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>False alarms</topic><topic>Fault detection</topic><topic>Feasibility</topic><topic>Parameters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Niu, Yichun</creatorcontrib><creatorcontrib>Li, Sheng</creatorcontrib><creatorcontrib>Gao, Ming</creatorcontrib><creatorcontrib>Zhou, Donghua</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Niu, Yichun</au><au>Li, Sheng</au><au>Gao, Ming</au><au>Zhou, Donghua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Fault Detection for Stochastic Linear Time-Varying Systems by [Formula Omitted] Test</atitle><jtitle>IEEE transactions on automatic control</jtitle><date>2024-01-01</date><risdate>2024</risdate><volume>69</volume><issue>4</issue><spage>2294</spage><pages>2294-</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><abstract>This article is concerned with the problem of fault detection (FD) for stochastic linear time-varying systems. The unified framework of the residual generator is constructed by using all currently available inputs and outputs, which can describe the existing observer-based methods and the parity space method. Then, the [Formula Omitted] test is introduced to evaluate the multivariate residual. In this article, the fault detector is said to be optimal if the missed detection rate (MDR) is minimal under a given false alarm rate. In theory, the relationship between the MDR and the residual parameter matrix is analyzed, which reveals how the dimension of a residual affects the MDR for the first time. When the fault amplitude is known, the optimal fault detector is derived, which is infeasible in practical applications. Next, a new recursive and feasible FD method is presented, where the residual parameter matrix gradually tends to the theoretically optimal one. Finally, an illustrative example is provided to demonstrate the feasibility and superiority of the obtained algorithm.</abstract><cop>New York</cop><pub>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</pub><doi>10.1109/TAC.2023.3329528</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 2024-01, Vol.69 (4), p.2294 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_proquest_journals_3015037537 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms False alarms Fault detection Feasibility Parameters |
title | Optimal Fault Detection for Stochastic Linear Time-Varying Systems by [Formula Omitted] Test |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T20%3A03%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Fault%20Detection%20for%20Stochastic%20Linear%20Time-Varying%20Systems%20by%20%5BFormula%20Omitted%5D%20Test&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Niu,%20Yichun&rft.date=2024-01-01&rft.volume=69&rft.issue=4&rft.spage=2294&rft.pages=2294-&rft.issn=0018-9286&rft.eissn=1558-2523&rft_id=info:doi/10.1109/TAC.2023.3329528&rft_dat=%3Cproquest%3E3015037537%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3015037537&rft_id=info:pmid/&rfr_iscdi=true |