Optimal Fault Detection for Stochastic Linear Time-Varying Systems by [Formula Omitted] Test

This article is concerned with the problem of fault detection (FD) for stochastic linear time-varying systems. The unified framework of the residual generator is constructed by using all currently available inputs and outputs, which can describe the existing observer-based methods and the parity spa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2024-01, Vol.69 (4), p.2294
Hauptverfasser: Niu, Yichun, Li, Sheng, Gao, Ming, Zhou, Donghua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 2294
container_title IEEE transactions on automatic control
container_volume 69
creator Niu, Yichun
Li, Sheng
Gao, Ming
Zhou, Donghua
description This article is concerned with the problem of fault detection (FD) for stochastic linear time-varying systems. The unified framework of the residual generator is constructed by using all currently available inputs and outputs, which can describe the existing observer-based methods and the parity space method. Then, the [Formula Omitted] test is introduced to evaluate the multivariate residual. In this article, the fault detector is said to be optimal if the missed detection rate (MDR) is minimal under a given false alarm rate. In theory, the relationship between the MDR and the residual parameter matrix is analyzed, which reveals how the dimension of a residual affects the MDR for the first time. When the fault amplitude is known, the optimal fault detector is derived, which is infeasible in practical applications. Next, a new recursive and feasible FD method is presented, where the residual parameter matrix gradually tends to the theoretically optimal one. Finally, an illustrative example is provided to demonstrate the feasibility and superiority of the obtained algorithm.
doi_str_mv 10.1109/TAC.2023.3329528
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3015037537</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3015037537</sourcerecordid><originalsourceid>FETCH-proquest_journals_30150375373</originalsourceid><addsrcrecordid>eNqNir1uwjAYAC1UJFLKzvhJnRP8E0MyVmmjDpUYiLq0KDLBgFEcp_aXIW_fDH2ATqfTHSFrRhPGaL6pXoqEUy4SIXgueTYjEZMyi7nk4oFElLIsznm2XZDHEO6TbtOUReR736OxqoVSDS3Cq0bdoHEdXJyHA7rmpgKaBj5Mp5WHylgdfyo_mu4KhzGgtgFOI3yVztuhVbC3BlGfj1DpgE9kflFt0Ks_Lslz-VYV73Hv3c8wDfXdDb6bUi0ok1TspNiJ_12_YJNJbQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3015037537</pqid></control><display><type>article</type><title>Optimal Fault Detection for Stochastic Linear Time-Varying Systems by [Formula Omitted] Test</title><source>IEEE Electronic Library (IEL)</source><creator>Niu, Yichun ; Li, Sheng ; Gao, Ming ; Zhou, Donghua</creator><creatorcontrib>Niu, Yichun ; Li, Sheng ; Gao, Ming ; Zhou, Donghua</creatorcontrib><description>This article is concerned with the problem of fault detection (FD) for stochastic linear time-varying systems. The unified framework of the residual generator is constructed by using all currently available inputs and outputs, which can describe the existing observer-based methods and the parity space method. Then, the [Formula Omitted] test is introduced to evaluate the multivariate residual. In this article, the fault detector is said to be optimal if the missed detection rate (MDR) is minimal under a given false alarm rate. In theory, the relationship between the MDR and the residual parameter matrix is analyzed, which reveals how the dimension of a residual affects the MDR for the first time. When the fault amplitude is known, the optimal fault detector is derived, which is infeasible in practical applications. Next, a new recursive and feasible FD method is presented, where the residual parameter matrix gradually tends to the theoretically optimal one. Finally, an illustrative example is provided to demonstrate the feasibility and superiority of the obtained algorithm.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2023.3329528</identifier><language>eng</language><publisher>New York: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</publisher><subject>Algorithms ; False alarms ; Fault detection ; Feasibility ; Parameters</subject><ispartof>IEEE transactions on automatic control, 2024-01, Vol.69 (4), p.2294</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Niu, Yichun</creatorcontrib><creatorcontrib>Li, Sheng</creatorcontrib><creatorcontrib>Gao, Ming</creatorcontrib><creatorcontrib>Zhou, Donghua</creatorcontrib><title>Optimal Fault Detection for Stochastic Linear Time-Varying Systems by [Formula Omitted] Test</title><title>IEEE transactions on automatic control</title><description>This article is concerned with the problem of fault detection (FD) for stochastic linear time-varying systems. The unified framework of the residual generator is constructed by using all currently available inputs and outputs, which can describe the existing observer-based methods and the parity space method. Then, the [Formula Omitted] test is introduced to evaluate the multivariate residual. In this article, the fault detector is said to be optimal if the missed detection rate (MDR) is minimal under a given false alarm rate. In theory, the relationship between the MDR and the residual parameter matrix is analyzed, which reveals how the dimension of a residual affects the MDR for the first time. When the fault amplitude is known, the optimal fault detector is derived, which is infeasible in practical applications. Next, a new recursive and feasible FD method is presented, where the residual parameter matrix gradually tends to the theoretically optimal one. Finally, an illustrative example is provided to demonstrate the feasibility and superiority of the obtained algorithm.</description><subject>Algorithms</subject><subject>False alarms</subject><subject>Fault detection</subject><subject>Feasibility</subject><subject>Parameters</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqNir1uwjAYAC1UJFLKzvhJnRP8E0MyVmmjDpUYiLq0KDLBgFEcp_aXIW_fDH2ATqfTHSFrRhPGaL6pXoqEUy4SIXgueTYjEZMyi7nk4oFElLIsznm2XZDHEO6TbtOUReR736OxqoVSDS3Cq0bdoHEdXJyHA7rmpgKaBj5Mp5WHylgdfyo_mu4KhzGgtgFOI3yVztuhVbC3BlGfj1DpgE9kflFt0Ks_Lslz-VYV73Hv3c8wDfXdDb6bUi0ok1TspNiJ_12_YJNJbQ</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Niu, Yichun</creator><creator>Li, Sheng</creator><creator>Gao, Ming</creator><creator>Zhou, Donghua</creator><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20240101</creationdate><title>Optimal Fault Detection for Stochastic Linear Time-Varying Systems by [Formula Omitted] Test</title><author>Niu, Yichun ; Li, Sheng ; Gao, Ming ; Zhou, Donghua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30150375373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>False alarms</topic><topic>Fault detection</topic><topic>Feasibility</topic><topic>Parameters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Niu, Yichun</creatorcontrib><creatorcontrib>Li, Sheng</creatorcontrib><creatorcontrib>Gao, Ming</creatorcontrib><creatorcontrib>Zhou, Donghua</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Niu, Yichun</au><au>Li, Sheng</au><au>Gao, Ming</au><au>Zhou, Donghua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Fault Detection for Stochastic Linear Time-Varying Systems by [Formula Omitted] Test</atitle><jtitle>IEEE transactions on automatic control</jtitle><date>2024-01-01</date><risdate>2024</risdate><volume>69</volume><issue>4</issue><spage>2294</spage><pages>2294-</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><abstract>This article is concerned with the problem of fault detection (FD) for stochastic linear time-varying systems. The unified framework of the residual generator is constructed by using all currently available inputs and outputs, which can describe the existing observer-based methods and the parity space method. Then, the [Formula Omitted] test is introduced to evaluate the multivariate residual. In this article, the fault detector is said to be optimal if the missed detection rate (MDR) is minimal under a given false alarm rate. In theory, the relationship between the MDR and the residual parameter matrix is analyzed, which reveals how the dimension of a residual affects the MDR for the first time. When the fault amplitude is known, the optimal fault detector is derived, which is infeasible in practical applications. Next, a new recursive and feasible FD method is presented, where the residual parameter matrix gradually tends to the theoretically optimal one. Finally, an illustrative example is provided to demonstrate the feasibility and superiority of the obtained algorithm.</abstract><cop>New York</cop><pub>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</pub><doi>10.1109/TAC.2023.3329528</doi></addata></record>
fulltext fulltext
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 2024-01, Vol.69 (4), p.2294
issn 0018-9286
1558-2523
language eng
recordid cdi_proquest_journals_3015037537
source IEEE Electronic Library (IEL)
subjects Algorithms
False alarms
Fault detection
Feasibility
Parameters
title Optimal Fault Detection for Stochastic Linear Time-Varying Systems by [Formula Omitted] Test
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T20%3A03%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Fault%20Detection%20for%20Stochastic%20Linear%20Time-Varying%20Systems%20by%20%5BFormula%20Omitted%5D%20Test&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Niu,%20Yichun&rft.date=2024-01-01&rft.volume=69&rft.issue=4&rft.spage=2294&rft.pages=2294-&rft.issn=0018-9286&rft.eissn=1558-2523&rft_id=info:doi/10.1109/TAC.2023.3329528&rft_dat=%3Cproquest%3E3015037537%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3015037537&rft_id=info:pmid/&rfr_iscdi=true