A \((\phi_n, \phi)\)-Poincaré inequality on John domain

Given a bounded domain \(\Omega \subset {\mathbb R}^{n}\) with \(n\ge2\), let \(\phi \) is a Young function satisfying the doubling condition with the constant \(K_\phi

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-05
Hauptverfasser: Feng, Shangying, Tian, Liang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Feng, Shangying
Tian, Liang
description Given a bounded domain \(\Omega \subset {\mathbb R}^{n}\) with \(n\ge2\), let \(\phi \) is a Young function satisfying the doubling condition with the constant \(K_\phi
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3014333428</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3014333428</sourcerecordid><originalsourceid>FETCH-proquest_journals_30143334283</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwcFSI0dCIKcjIjM_TUQDRmjGaugH5mXnJiUWHVypk5qUWlibmZJZUKuTnKXjlZ-QppOTnJmbm8TCwpiXmFKfyQmluBmU31xBnD92CovzC0tTikvis_NKiPKBUvLGBoYmxsbGJkYUxcaoAuwg1Fw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3014333428</pqid></control><display><type>article</type><title>A \((\phi_n, \phi)\)-Poincaré inequality on John domain</title><source>Free E- Journals</source><creator>Feng, Shangying ; Tian, Liang</creator><creatorcontrib>Feng, Shangying ; Tian, Liang</creatorcontrib><description>Given a bounded domain \(\Omega \subset {\mathbb R}^{n}\) with \(n\ge2\), let \(\phi \) is a Young function satisfying the doubling condition with the constant \(K_\phi&lt;2^{n}\). If \(\Omega\) is a John domain, we show that \(\Omega \) supports a \((\phi_{n}, \phi)\)-Poincaré inequality. Conversely, assume additionally that \(\Omega\) is simply connected domain when \(n=2\) or a bounded domain which is quasiconformally equivalent to some uniform domain when \(n\ge3\). If \(\Omega\) supports a \((\phi_n, \phi)\)-Poincaré inequality, we show that it is a John domain.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><ispartof>arXiv.org, 2024-05</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>781,785</link.rule.ids></links><search><creatorcontrib>Feng, Shangying</creatorcontrib><creatorcontrib>Tian, Liang</creatorcontrib><title>A \((\phi_n, \phi)\)-Poincaré inequality on John domain</title><title>arXiv.org</title><description>Given a bounded domain \(\Omega \subset {\mathbb R}^{n}\) with \(n\ge2\), let \(\phi \) is a Young function satisfying the doubling condition with the constant \(K_\phi&lt;2^{n}\). If \(\Omega\) is a John domain, we show that \(\Omega \) supports a \((\phi_{n}, \phi)\)-Poincaré inequality. Conversely, assume additionally that \(\Omega\) is simply connected domain when \(n=2\) or a bounded domain which is quasiconformally equivalent to some uniform domain when \(n\ge3\). If \(\Omega\) supports a \((\phi_n, \phi)\)-Poincaré inequality, we show that it is a John domain.</description><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwcFSI0dCIKcjIjM_TUQDRmjGaugH5mXnJiUWHVypk5qUWlibmZJZUKuTnKXjlZ-QppOTnJmbm8TCwpiXmFKfyQmluBmU31xBnD92CovzC0tTikvis_NKiPKBUvLGBoYmxsbGJkYUxcaoAuwg1Fw</recordid><startdate>20240516</startdate><enddate>20240516</enddate><creator>Feng, Shangying</creator><creator>Tian, Liang</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240516</creationdate><title>A \((\phi_n, \phi)\)-Poincaré inequality on John domain</title><author>Feng, Shangying ; Tian, Liang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30143334283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Feng, Shangying</creatorcontrib><creatorcontrib>Tian, Liang</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feng, Shangying</au><au>Tian, Liang</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A \((\phi_n, \phi)\)-Poincaré inequality on John domain</atitle><jtitle>arXiv.org</jtitle><date>2024-05-16</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Given a bounded domain \(\Omega \subset {\mathbb R}^{n}\) with \(n\ge2\), let \(\phi \) is a Young function satisfying the doubling condition with the constant \(K_\phi&lt;2^{n}\). If \(\Omega\) is a John domain, we show that \(\Omega \) supports a \((\phi_{n}, \phi)\)-Poincaré inequality. Conversely, assume additionally that \(\Omega\) is simply connected domain when \(n=2\) or a bounded domain which is quasiconformally equivalent to some uniform domain when \(n\ge3\). If \(\Omega\) supports a \((\phi_n, \phi)\)-Poincaré inequality, we show that it is a John domain.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_3014333428
source Free E- Journals
title A \((\phi_n, \phi)\)-Poincaré inequality on John domain
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T20%3A33%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20%5C((%5Cphi_n,%20%5Cphi)%5C)-Poincar%C3%A9%20inequality%20on%20John%20domain&rft.jtitle=arXiv.org&rft.au=Feng,%20Shangying&rft.date=2024-05-16&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3014333428%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3014333428&rft_id=info:pmid/&rfr_iscdi=true