Looking Beyond What You See: An Empirical Analysis on Subgroup Intersectional Fairness for Multi-label Chest X-ray Classification Using Social Determinants of Racial Health Inequities
There has been significant progress in implementing deep learning models in disease diagnosis using chest X- rays. Despite these advancements, inherent biases in these models can lead to disparities in prediction accuracy across protected groups. In this study, we propose a framework to achieve accu...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-03 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Moukheiber, Dana Mahindre, Saurabh Moukheiber, Lama Moukheiber, Mira Gao, Mingchen |
description | There has been significant progress in implementing deep learning models in disease diagnosis using chest X- rays. Despite these advancements, inherent biases in these models can lead to disparities in prediction accuracy across protected groups. In this study, we propose a framework to achieve accurate diagnostic outcomes and ensure fairness across intersectional groups in high-dimensional chest X- ray multi-label classification. Transcending traditional protected attributes, we consider complex interactions within social determinants, enabling a more granular benchmark and evaluation of fairness. We present a simple and robust method that involves retraining the last classification layer of pre-trained models using a balanced dataset across groups. Additionally, we account for fairness constraints and integrate class-balanced fine-tuning for multi-label settings. The evaluation of our method on the MIMIC-CXR dataset demonstrates that our framework achieves an optimal tradeoff between accuracy and fairness compared to baseline methods. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3014225162</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3014225162</sourcerecordid><originalsourceid>FETCH-proquest_journals_30142251623</originalsourceid><addsrcrecordid>eNqNj81OwzAMgCMkJCbYO1jiXKlN6UDcoGwaElxWEHCavOKuHlnSxcmhT8brkSEegJPlv--zT9REl2WR3VxpfaamIrs8z_XsWldVOVHfT859sd3CPY3OfsJbjwE-XISG6BbuLMz3A3tu0aQEzSgs4Cw0cbP1Lg7waAN5oTawS21YIHtLItA5D8_RBM4MbshA3ZMEeM88jlAbFOEuQY9b8CpHf-NaToAHSrw9W7QhiTpY4W95SWhCn2x0iByY5EKddmiEpn_xXF0u5i_1Mhu8O8TkWu9c9OkkWZd5kV6vipku_zf1A2zOZEE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3014225162</pqid></control><display><type>article</type><title>Looking Beyond What You See: An Empirical Analysis on Subgroup Intersectional Fairness for Multi-label Chest X-ray Classification Using Social Determinants of Racial Health Inequities</title><source>Free E- Journals</source><creator>Moukheiber, Dana ; Mahindre, Saurabh ; Moukheiber, Lama ; Moukheiber, Mira ; Gao, Mingchen</creator><creatorcontrib>Moukheiber, Dana ; Mahindre, Saurabh ; Moukheiber, Lama ; Moukheiber, Mira ; Gao, Mingchen</creatorcontrib><description>There has been significant progress in implementing deep learning models in disease diagnosis using chest X- rays. Despite these advancements, inherent biases in these models can lead to disparities in prediction accuracy across protected groups. In this study, we propose a framework to achieve accurate diagnostic outcomes and ensure fairness across intersectional groups in high-dimensional chest X- ray multi-label classification. Transcending traditional protected attributes, we consider complex interactions within social determinants, enabling a more granular benchmark and evaluation of fairness. We present a simple and robust method that involves retraining the last classification layer of pre-trained models using a balanced dataset across groups. Additionally, we account for fairness constraints and integrate class-balanced fine-tuning for multi-label settings. The evaluation of our method on the MIMIC-CXR dataset demonstrates that our framework achieves an optimal tradeoff between accuracy and fairness compared to baseline methods.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Classification ; Datasets ; Empirical analysis ; Labels ; Subgroups</subject><ispartof>arXiv.org, 2024-03</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>778,782</link.rule.ids></links><search><creatorcontrib>Moukheiber, Dana</creatorcontrib><creatorcontrib>Mahindre, Saurabh</creatorcontrib><creatorcontrib>Moukheiber, Lama</creatorcontrib><creatorcontrib>Moukheiber, Mira</creatorcontrib><creatorcontrib>Gao, Mingchen</creatorcontrib><title>Looking Beyond What You See: An Empirical Analysis on Subgroup Intersectional Fairness for Multi-label Chest X-ray Classification Using Social Determinants of Racial Health Inequities</title><title>arXiv.org</title><description>There has been significant progress in implementing deep learning models in disease diagnosis using chest X- rays. Despite these advancements, inherent biases in these models can lead to disparities in prediction accuracy across protected groups. In this study, we propose a framework to achieve accurate diagnostic outcomes and ensure fairness across intersectional groups in high-dimensional chest X- ray multi-label classification. Transcending traditional protected attributes, we consider complex interactions within social determinants, enabling a more granular benchmark and evaluation of fairness. We present a simple and robust method that involves retraining the last classification layer of pre-trained models using a balanced dataset across groups. Additionally, we account for fairness constraints and integrate class-balanced fine-tuning for multi-label settings. The evaluation of our method on the MIMIC-CXR dataset demonstrates that our framework achieves an optimal tradeoff between accuracy and fairness compared to baseline methods.</description><subject>Classification</subject><subject>Datasets</subject><subject>Empirical analysis</subject><subject>Labels</subject><subject>Subgroups</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNj81OwzAMgCMkJCbYO1jiXKlN6UDcoGwaElxWEHCavOKuHlnSxcmhT8brkSEegJPlv--zT9REl2WR3VxpfaamIrs8z_XsWldVOVHfT859sd3CPY3OfsJbjwE-XISG6BbuLMz3A3tu0aQEzSgs4Cw0cbP1Lg7waAN5oTawS21YIHtLItA5D8_RBM4MbshA3ZMEeM88jlAbFOEuQY9b8CpHf-NaToAHSrw9W7QhiTpY4W95SWhCn2x0iByY5EKddmiEpn_xXF0u5i_1Mhu8O8TkWu9c9OkkWZd5kV6vipku_zf1A2zOZEE</recordid><startdate>20240327</startdate><enddate>20240327</enddate><creator>Moukheiber, Dana</creator><creator>Mahindre, Saurabh</creator><creator>Moukheiber, Lama</creator><creator>Moukheiber, Mira</creator><creator>Gao, Mingchen</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240327</creationdate><title>Looking Beyond What You See: An Empirical Analysis on Subgroup Intersectional Fairness for Multi-label Chest X-ray Classification Using Social Determinants of Racial Health Inequities</title><author>Moukheiber, Dana ; Mahindre, Saurabh ; Moukheiber, Lama ; Moukheiber, Mira ; Gao, Mingchen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30142251623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Classification</topic><topic>Datasets</topic><topic>Empirical analysis</topic><topic>Labels</topic><topic>Subgroups</topic><toplevel>online_resources</toplevel><creatorcontrib>Moukheiber, Dana</creatorcontrib><creatorcontrib>Mahindre, Saurabh</creatorcontrib><creatorcontrib>Moukheiber, Lama</creatorcontrib><creatorcontrib>Moukheiber, Mira</creatorcontrib><creatorcontrib>Gao, Mingchen</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moukheiber, Dana</au><au>Mahindre, Saurabh</au><au>Moukheiber, Lama</au><au>Moukheiber, Mira</au><au>Gao, Mingchen</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Looking Beyond What You See: An Empirical Analysis on Subgroup Intersectional Fairness for Multi-label Chest X-ray Classification Using Social Determinants of Racial Health Inequities</atitle><jtitle>arXiv.org</jtitle><date>2024-03-27</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>There has been significant progress in implementing deep learning models in disease diagnosis using chest X- rays. Despite these advancements, inherent biases in these models can lead to disparities in prediction accuracy across protected groups. In this study, we propose a framework to achieve accurate diagnostic outcomes and ensure fairness across intersectional groups in high-dimensional chest X- ray multi-label classification. Transcending traditional protected attributes, we consider complex interactions within social determinants, enabling a more granular benchmark and evaluation of fairness. We present a simple and robust method that involves retraining the last classification layer of pre-trained models using a balanced dataset across groups. Additionally, we account for fairness constraints and integrate class-balanced fine-tuning for multi-label settings. The evaluation of our method on the MIMIC-CXR dataset demonstrates that our framework achieves an optimal tradeoff between accuracy and fairness compared to baseline methods.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3014225162 |
source | Free E- Journals |
subjects | Classification Datasets Empirical analysis Labels Subgroups |
title | Looking Beyond What You See: An Empirical Analysis on Subgroup Intersectional Fairness for Multi-label Chest X-ray Classification Using Social Determinants of Racial Health Inequities |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T05%3A48%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Looking%20Beyond%20What%20You%20See:%20An%20Empirical%20Analysis%20on%20Subgroup%20Intersectional%20Fairness%20for%20Multi-label%20Chest%20X-ray%20Classification%20Using%20Social%20Determinants%20of%20Racial%20Health%20Inequities&rft.jtitle=arXiv.org&rft.au=Moukheiber,%20Dana&rft.date=2024-03-27&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3014225162%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3014225162&rft_id=info:pmid/&rfr_iscdi=true |