Minimax density estimation in the adversarial framework under local differential privacy

We consider the problem of nonparametric density estimation under privacy constraints in an adversarial framework. To this end, we study minimax rates under local differential privacy over Sobolev spaces. We first obtain a lower bound which allows us to quantify the impact of privacy compared with t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-03
Hauptverfasser: Mélisande Albert, Chevallier, Juliette, Laurent, Béatrice, Sacko, Ousmane
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Mélisande Albert
Chevallier, Juliette
Laurent, Béatrice
Sacko, Ousmane
description We consider the problem of nonparametric density estimation under privacy constraints in an adversarial framework. To this end, we study minimax rates under local differential privacy over Sobolev spaces. We first obtain a lower bound which allows us to quantify the impact of privacy compared with the classical framework. Next, we introduce a new Coordinate block privacy mechanism that guarantees local differential privacy, which, coupled with a projection estimator, achieves the minimax optimal rates.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3014225129</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3014225129</sourcerecordid><originalsourceid>FETCH-proquest_journals_30142251293</originalsourceid><addsrcrecordid>eNqNjs0KwjAQhIMgWLTvsOC50CbWn7MoXrx58FaC2WBqm9RNWu3bG8EH8DTMzAczE5ZwIYpsu-J8xlLv6zzP-XrDy1Ik7Ho21rTyDQqtN2EE9CH6YJwFYyHcEaQakLwkIxvQJFt8OXpAbxUSNO4WU2W0RkIbvkhHZpC3ccGmWjYe05_O2fJ4uOxPWUfu2ceVqnY92VhVIi_it7LgO_Ef9QErxELv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3014225129</pqid></control><display><type>article</type><title>Minimax density estimation in the adversarial framework under local differential privacy</title><source>Free E- Journals</source><creator>Mélisande Albert ; Chevallier, Juliette ; Laurent, Béatrice ; Sacko, Ousmane</creator><creatorcontrib>Mélisande Albert ; Chevallier, Juliette ; Laurent, Béatrice ; Sacko, Ousmane</creatorcontrib><description>We consider the problem of nonparametric density estimation under privacy constraints in an adversarial framework. To this end, we study minimax rates under local differential privacy over Sobolev spaces. We first obtain a lower bound which allows us to quantify the impact of privacy compared with the classical framework. Next, we introduce a new Coordinate block privacy mechanism that guarantees local differential privacy, which, coupled with a projection estimator, achieves the minimax optimal rates.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Density ; Lower bounds ; Minimax technique ; Privacy ; Sobolev space</subject><ispartof>arXiv.org, 2024-03</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Mélisande Albert</creatorcontrib><creatorcontrib>Chevallier, Juliette</creatorcontrib><creatorcontrib>Laurent, Béatrice</creatorcontrib><creatorcontrib>Sacko, Ousmane</creatorcontrib><title>Minimax density estimation in the adversarial framework under local differential privacy</title><title>arXiv.org</title><description>We consider the problem of nonparametric density estimation under privacy constraints in an adversarial framework. To this end, we study minimax rates under local differential privacy over Sobolev spaces. We first obtain a lower bound which allows us to quantify the impact of privacy compared with the classical framework. Next, we introduce a new Coordinate block privacy mechanism that guarantees local differential privacy, which, coupled with a projection estimator, achieves the minimax optimal rates.</description><subject>Density</subject><subject>Lower bounds</subject><subject>Minimax technique</subject><subject>Privacy</subject><subject>Sobolev space</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjs0KwjAQhIMgWLTvsOC50CbWn7MoXrx58FaC2WBqm9RNWu3bG8EH8DTMzAczE5ZwIYpsu-J8xlLv6zzP-XrDy1Ik7Ho21rTyDQqtN2EE9CH6YJwFYyHcEaQakLwkIxvQJFt8OXpAbxUSNO4WU2W0RkIbvkhHZpC3ccGmWjYe05_O2fJ4uOxPWUfu2ceVqnY92VhVIi_it7LgO_Ef9QErxELv</recordid><startdate>20240327</startdate><enddate>20240327</enddate><creator>Mélisande Albert</creator><creator>Chevallier, Juliette</creator><creator>Laurent, Béatrice</creator><creator>Sacko, Ousmane</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240327</creationdate><title>Minimax density estimation in the adversarial framework under local differential privacy</title><author>Mélisande Albert ; Chevallier, Juliette ; Laurent, Béatrice ; Sacko, Ousmane</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30142251293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Density</topic><topic>Lower bounds</topic><topic>Minimax technique</topic><topic>Privacy</topic><topic>Sobolev space</topic><toplevel>online_resources</toplevel><creatorcontrib>Mélisande Albert</creatorcontrib><creatorcontrib>Chevallier, Juliette</creatorcontrib><creatorcontrib>Laurent, Béatrice</creatorcontrib><creatorcontrib>Sacko, Ousmane</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mélisande Albert</au><au>Chevallier, Juliette</au><au>Laurent, Béatrice</au><au>Sacko, Ousmane</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Minimax density estimation in the adversarial framework under local differential privacy</atitle><jtitle>arXiv.org</jtitle><date>2024-03-27</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We consider the problem of nonparametric density estimation under privacy constraints in an adversarial framework. To this end, we study minimax rates under local differential privacy over Sobolev spaces. We first obtain a lower bound which allows us to quantify the impact of privacy compared with the classical framework. Next, we introduce a new Coordinate block privacy mechanism that guarantees local differential privacy, which, coupled with a projection estimator, achieves the minimax optimal rates.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_3014225129
source Free E- Journals
subjects Density
Lower bounds
Minimax technique
Privacy
Sobolev space
title Minimax density estimation in the adversarial framework under local differential privacy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T17%3A42%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Minimax%20density%20estimation%20in%20the%20adversarial%20framework%20under%20local%20differential%20privacy&rft.jtitle=arXiv.org&rft.au=M%C3%A9lisande%20Albert&rft.date=2024-03-27&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3014225129%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3014225129&rft_id=info:pmid/&rfr_iscdi=true