A general Chevalley formula for semi-infinite flag manifolds and quantum K-theory
We give a Chevalley formula for an arbitrary weight for the torus-equivariant K -group of semi-infinite flag manifolds, which is expressed in terms of the quantum alcove model. As an application, we prove the Chevalley formula for an anti-dominant fundamental weight for the (small) torus-equivariant...
Gespeichert in:
Veröffentlicht in: | Selecta mathematica (Basel, Switzerland) Switzerland), 2024-07, Vol.30 (3), Article 39 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We give a Chevalley formula for an arbitrary weight for the torus-equivariant
K
-group of semi-infinite flag manifolds, which is expressed in terms of the quantum alcove model. As an application, we prove the Chevalley formula for an anti-dominant fundamental weight for the (small) torus-equivariant quantum
K
-theory
Q
K
T
(
G
/
B
)
of a (finite-dimensional) flag manifold
G
/
B
; this has been a longstanding conjecture about the multiplicative structure of
Q
K
T
(
G
/
B
)
. In type
A
n
-
1
, we prove that the so-called quantum Grothendieck polynomials indeed represent (opposite) Schubert classes in the (non-equivariant) quantum
K
-theory
Q
K
(
S
L
n
/
B
)
; we also obtain very explicit information about the coefficients in the respective Chevalley formula. |
---|---|
ISSN: | 1022-1824 1420-9020 |
DOI: | 10.1007/s00029-024-00924-8 |