Word embeddings for retrieving tabular data from research publications

Scientists face challenges when finding datasets related to their research problems due to the limitations of current dataset search engines. Existing tools for searching research datasets rely on publication content or metadata, do not considering the data contained in the publication in the form o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Machine learning 2024-04, Vol.113 (4), p.2227-2248
Hauptverfasser: Berenguer, Alberto, Mazón, Jose-Norberto, Tomás, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2248
container_issue 4
container_start_page 2227
container_title Machine learning
container_volume 113
creator Berenguer, Alberto
Mazón, Jose-Norberto
Tomás, David
description Scientists face challenges when finding datasets related to their research problems due to the limitations of current dataset search engines. Existing tools for searching research datasets rely on publication content or metadata, do not considering the data contained in the publication in the form of tables. Moreover, scientists require more elaborate inputs and functionalities to retrieve different parts of an article, such as data presented in tables, based on their search purposes. Therefore, this paper proposes a novel approach to retrieve relevant tabular datasets from publications. The input of our system is a research problem stated as an abstract from a scientific paper, and the output is a set of relevant tables from publications that are related to the research problem. This approach aims to provide a better solution for scientists to find useful datasets that support them in addressing their research problems. To validate this approach, experiments were conducted using word embedding from different language models to calculate the semantic similarity between abstracts and tables. The results showed that contextual models significantly outperformed non-contextual models, especially when pre-trained with scientific data. Furthermore, the importance of context was found to be crucial for improving the results.
doi_str_mv 10.1007/s10994-023-06472-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3013903346</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3013903346</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-ea04877b054c75d23b253e92e4b7a2fef67718bff1fd51491df7153596eb212d3</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoWEdfwFXAdfTk3i5lcFQYcKO4DEmTjB1m2jFpBd_eaAV3rg4_57_Ah9AlhWsKoG8yhaYRBBgnoIRmBI5QRaUuUip5jCqoa0kUZfIUneW8BQCmalWh1euQPA57F7zv-k3GcUg4hTF14aNoPFo37WzC3o4WxzTsyzMHm9o3fJjcrmvt2A19Pkcn0e5yuPi9C_SyuntePpD10_3j8nZNWq74SIIFUWvtQIpWS8-4Y5KHhgXhtGUxRKU1rV2MNHpJRUN91FRy2ajgGGWeL9DV3HtIw_sU8mi2w5T6Mmk4UN4A50IVF5tdbRpyTiGaQ-r2Nn0aCuabl5l5mcLL_PAyUEJ8DuVi7jch_VX_k_oCRQdthg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3013903346</pqid></control><display><type>article</type><title>Word embeddings for retrieving tabular data from research publications</title><source>SpringerLink Journals - AutoHoldings</source><creator>Berenguer, Alberto ; Mazón, Jose-Norberto ; Tomás, David</creator><creatorcontrib>Berenguer, Alberto ; Mazón, Jose-Norberto ; Tomás, David</creatorcontrib><description>Scientists face challenges when finding datasets related to their research problems due to the limitations of current dataset search engines. Existing tools for searching research datasets rely on publication content or metadata, do not considering the data contained in the publication in the form of tables. Moreover, scientists require more elaborate inputs and functionalities to retrieve different parts of an article, such as data presented in tables, based on their search purposes. Therefore, this paper proposes a novel approach to retrieve relevant tabular datasets from publications. The input of our system is a research problem stated as an abstract from a scientific paper, and the output is a set of relevant tables from publications that are related to the research problem. This approach aims to provide a better solution for scientists to find useful datasets that support them in addressing their research problems. To validate this approach, experiments were conducted using word embedding from different language models to calculate the semantic similarity between abstracts and tables. The results showed that contextual models significantly outperformed non-contextual models, especially when pre-trained with scientific data. Furthermore, the importance of context was found to be crucial for improving the results.</description><identifier>ISSN: 0885-6125</identifier><identifier>EISSN: 1573-0565</identifier><identifier>DOI: 10.1007/s10994-023-06472-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial Intelligence ; Computer Science ; Control ; Datasets ; Machine Learning ; Mechatronics ; Natural Language Processing (NLP) ; Robotics ; Scientists ; Search engines ; Simulation and Modeling ; Special Issue on Discovery Science 2022 ; Tables (data) ; Words (language)</subject><ispartof>Machine learning, 2024-04, Vol.113 (4), p.2227-2248</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-ea04877b054c75d23b253e92e4b7a2fef67718bff1fd51491df7153596eb212d3</citedby><cites>FETCH-LOGICAL-c363t-ea04877b054c75d23b253e92e4b7a2fef67718bff1fd51491df7153596eb212d3</cites><orcidid>0000-0002-2867-8329</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10994-023-06472-0$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10994-023-06472-0$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Berenguer, Alberto</creatorcontrib><creatorcontrib>Mazón, Jose-Norberto</creatorcontrib><creatorcontrib>Tomás, David</creatorcontrib><title>Word embeddings for retrieving tabular data from research publications</title><title>Machine learning</title><addtitle>Mach Learn</addtitle><description>Scientists face challenges when finding datasets related to their research problems due to the limitations of current dataset search engines. Existing tools for searching research datasets rely on publication content or metadata, do not considering the data contained in the publication in the form of tables. Moreover, scientists require more elaborate inputs and functionalities to retrieve different parts of an article, such as data presented in tables, based on their search purposes. Therefore, this paper proposes a novel approach to retrieve relevant tabular datasets from publications. The input of our system is a research problem stated as an abstract from a scientific paper, and the output is a set of relevant tables from publications that are related to the research problem. This approach aims to provide a better solution for scientists to find useful datasets that support them in addressing their research problems. To validate this approach, experiments were conducted using word embedding from different language models to calculate the semantic similarity between abstracts and tables. The results showed that contextual models significantly outperformed non-contextual models, especially when pre-trained with scientific data. Furthermore, the importance of context was found to be crucial for improving the results.</description><subject>Artificial Intelligence</subject><subject>Computer Science</subject><subject>Control</subject><subject>Datasets</subject><subject>Machine Learning</subject><subject>Mechatronics</subject><subject>Natural Language Processing (NLP)</subject><subject>Robotics</subject><subject>Scientists</subject><subject>Search engines</subject><subject>Simulation and Modeling</subject><subject>Special Issue on Discovery Science 2022</subject><subject>Tables (data)</subject><subject>Words (language)</subject><issn>0885-6125</issn><issn>1573-0565</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kMtKxDAUhoMoWEdfwFXAdfTk3i5lcFQYcKO4DEmTjB1m2jFpBd_eaAV3rg4_57_Ah9AlhWsKoG8yhaYRBBgnoIRmBI5QRaUuUip5jCqoa0kUZfIUneW8BQCmalWh1euQPA57F7zv-k3GcUg4hTF14aNoPFo37WzC3o4WxzTsyzMHm9o3fJjcrmvt2A19Pkcn0e5yuPi9C_SyuntePpD10_3j8nZNWq74SIIFUWvtQIpWS8-4Y5KHhgXhtGUxRKU1rV2MNHpJRUN91FRy2ajgGGWeL9DV3HtIw_sU8mi2w5T6Mmk4UN4A50IVF5tdbRpyTiGaQ-r2Nn0aCuabl5l5mcLL_PAyUEJ8DuVi7jch_VX_k_oCRQdthg</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Berenguer, Alberto</creator><creator>Mazón, Jose-Norberto</creator><creator>Tomás, David</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2867-8329</orcidid></search><sort><creationdate>20240401</creationdate><title>Word embeddings for retrieving tabular data from research publications</title><author>Berenguer, Alberto ; Mazón, Jose-Norberto ; Tomás, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-ea04877b054c75d23b253e92e4b7a2fef67718bff1fd51491df7153596eb212d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial Intelligence</topic><topic>Computer Science</topic><topic>Control</topic><topic>Datasets</topic><topic>Machine Learning</topic><topic>Mechatronics</topic><topic>Natural Language Processing (NLP)</topic><topic>Robotics</topic><topic>Scientists</topic><topic>Search engines</topic><topic>Simulation and Modeling</topic><topic>Special Issue on Discovery Science 2022</topic><topic>Tables (data)</topic><topic>Words (language)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berenguer, Alberto</creatorcontrib><creatorcontrib>Mazón, Jose-Norberto</creatorcontrib><creatorcontrib>Tomás, David</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Machine learning</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berenguer, Alberto</au><au>Mazón, Jose-Norberto</au><au>Tomás, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Word embeddings for retrieving tabular data from research publications</atitle><jtitle>Machine learning</jtitle><stitle>Mach Learn</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>113</volume><issue>4</issue><spage>2227</spage><epage>2248</epage><pages>2227-2248</pages><issn>0885-6125</issn><eissn>1573-0565</eissn><abstract>Scientists face challenges when finding datasets related to their research problems due to the limitations of current dataset search engines. Existing tools for searching research datasets rely on publication content or metadata, do not considering the data contained in the publication in the form of tables. Moreover, scientists require more elaborate inputs and functionalities to retrieve different parts of an article, such as data presented in tables, based on their search purposes. Therefore, this paper proposes a novel approach to retrieve relevant tabular datasets from publications. The input of our system is a research problem stated as an abstract from a scientific paper, and the output is a set of relevant tables from publications that are related to the research problem. This approach aims to provide a better solution for scientists to find useful datasets that support them in addressing their research problems. To validate this approach, experiments were conducted using word embedding from different language models to calculate the semantic similarity between abstracts and tables. The results showed that contextual models significantly outperformed non-contextual models, especially when pre-trained with scientific data. Furthermore, the importance of context was found to be crucial for improving the results.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10994-023-06472-0</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-2867-8329</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0885-6125
ispartof Machine learning, 2024-04, Vol.113 (4), p.2227-2248
issn 0885-6125
1573-0565
language eng
recordid cdi_proquest_journals_3013903346
source SpringerLink Journals - AutoHoldings
subjects Artificial Intelligence
Computer Science
Control
Datasets
Machine Learning
Mechatronics
Natural Language Processing (NLP)
Robotics
Scientists
Search engines
Simulation and Modeling
Special Issue on Discovery Science 2022
Tables (data)
Words (language)
title Word embeddings for retrieving tabular data from research publications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T05%3A54%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Word%20embeddings%20for%20retrieving%20tabular%20data%20from%20research%20publications&rft.jtitle=Machine%20learning&rft.au=Berenguer,%20Alberto&rft.date=2024-04-01&rft.volume=113&rft.issue=4&rft.spage=2227&rft.epage=2248&rft.pages=2227-2248&rft.issn=0885-6125&rft.eissn=1573-0565&rft_id=info:doi/10.1007/s10994-023-06472-0&rft_dat=%3Cproquest_cross%3E3013903346%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3013903346&rft_id=info:pmid/&rfr_iscdi=true