Word embeddings for retrieving tabular data from research publications
Scientists face challenges when finding datasets related to their research problems due to the limitations of current dataset search engines. Existing tools for searching research datasets rely on publication content or metadata, do not considering the data contained in the publication in the form o...
Gespeichert in:
Veröffentlicht in: | Machine learning 2024-04, Vol.113 (4), p.2227-2248 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2248 |
---|---|
container_issue | 4 |
container_start_page | 2227 |
container_title | Machine learning |
container_volume | 113 |
creator | Berenguer, Alberto Mazón, Jose-Norberto Tomás, David |
description | Scientists face challenges when finding datasets related to their research problems due to the limitations of current dataset search engines. Existing tools for searching research datasets rely on publication content or metadata, do not considering the data contained in the publication in the form of tables. Moreover, scientists require more elaborate inputs and functionalities to retrieve different parts of an article, such as data presented in tables, based on their search purposes. Therefore, this paper proposes a novel approach to retrieve relevant tabular datasets from publications. The input of our system is a research problem stated as an abstract from a scientific paper, and the output is a set of relevant tables from publications that are related to the research problem. This approach aims to provide a better solution for scientists to find useful datasets that support them in addressing their research problems. To validate this approach, experiments were conducted using word embedding from different language models to calculate the semantic similarity between abstracts and tables. The results showed that contextual models significantly outperformed non-contextual models, especially when pre-trained with scientific data. Furthermore, the importance of context was found to be crucial for improving the results. |
doi_str_mv | 10.1007/s10994-023-06472-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3013903346</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3013903346</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-ea04877b054c75d23b253e92e4b7a2fef67718bff1fd51491df7153596eb212d3</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoWEdfwFXAdfTk3i5lcFQYcKO4DEmTjB1m2jFpBd_eaAV3rg4_57_Ah9AlhWsKoG8yhaYRBBgnoIRmBI5QRaUuUip5jCqoa0kUZfIUneW8BQCmalWh1euQPA57F7zv-k3GcUg4hTF14aNoPFo37WzC3o4WxzTsyzMHm9o3fJjcrmvt2A19Pkcn0e5yuPi9C_SyuntePpD10_3j8nZNWq74SIIFUWvtQIpWS8-4Y5KHhgXhtGUxRKU1rV2MNHpJRUN91FRy2ajgGGWeL9DV3HtIw_sU8mi2w5T6Mmk4UN4A50IVF5tdbRpyTiGaQ-r2Nn0aCuabl5l5mcLL_PAyUEJ8DuVi7jch_VX_k_oCRQdthg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3013903346</pqid></control><display><type>article</type><title>Word embeddings for retrieving tabular data from research publications</title><source>SpringerLink Journals - AutoHoldings</source><creator>Berenguer, Alberto ; Mazón, Jose-Norberto ; Tomás, David</creator><creatorcontrib>Berenguer, Alberto ; Mazón, Jose-Norberto ; Tomás, David</creatorcontrib><description>Scientists face challenges when finding datasets related to their research problems due to the limitations of current dataset search engines. Existing tools for searching research datasets rely on publication content or metadata, do not considering the data contained in the publication in the form of tables. Moreover, scientists require more elaborate inputs and functionalities to retrieve different parts of an article, such as data presented in tables, based on their search purposes. Therefore, this paper proposes a novel approach to retrieve relevant tabular datasets from publications. The input of our system is a research problem stated as an abstract from a scientific paper, and the output is a set of relevant tables from publications that are related to the research problem. This approach aims to provide a better solution for scientists to find useful datasets that support them in addressing their research problems. To validate this approach, experiments were conducted using word embedding from different language models to calculate the semantic similarity between abstracts and tables. The results showed that contextual models significantly outperformed non-contextual models, especially when pre-trained with scientific data. Furthermore, the importance of context was found to be crucial for improving the results.</description><identifier>ISSN: 0885-6125</identifier><identifier>EISSN: 1573-0565</identifier><identifier>DOI: 10.1007/s10994-023-06472-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial Intelligence ; Computer Science ; Control ; Datasets ; Machine Learning ; Mechatronics ; Natural Language Processing (NLP) ; Robotics ; Scientists ; Search engines ; Simulation and Modeling ; Special Issue on Discovery Science 2022 ; Tables (data) ; Words (language)</subject><ispartof>Machine learning, 2024-04, Vol.113 (4), p.2227-2248</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-ea04877b054c75d23b253e92e4b7a2fef67718bff1fd51491df7153596eb212d3</citedby><cites>FETCH-LOGICAL-c363t-ea04877b054c75d23b253e92e4b7a2fef67718bff1fd51491df7153596eb212d3</cites><orcidid>0000-0002-2867-8329</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10994-023-06472-0$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10994-023-06472-0$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Berenguer, Alberto</creatorcontrib><creatorcontrib>Mazón, Jose-Norberto</creatorcontrib><creatorcontrib>Tomás, David</creatorcontrib><title>Word embeddings for retrieving tabular data from research publications</title><title>Machine learning</title><addtitle>Mach Learn</addtitle><description>Scientists face challenges when finding datasets related to their research problems due to the limitations of current dataset search engines. Existing tools for searching research datasets rely on publication content or metadata, do not considering the data contained in the publication in the form of tables. Moreover, scientists require more elaborate inputs and functionalities to retrieve different parts of an article, such as data presented in tables, based on their search purposes. Therefore, this paper proposes a novel approach to retrieve relevant tabular datasets from publications. The input of our system is a research problem stated as an abstract from a scientific paper, and the output is a set of relevant tables from publications that are related to the research problem. This approach aims to provide a better solution for scientists to find useful datasets that support them in addressing their research problems. To validate this approach, experiments were conducted using word embedding from different language models to calculate the semantic similarity between abstracts and tables. The results showed that contextual models significantly outperformed non-contextual models, especially when pre-trained with scientific data. Furthermore, the importance of context was found to be crucial for improving the results.</description><subject>Artificial Intelligence</subject><subject>Computer Science</subject><subject>Control</subject><subject>Datasets</subject><subject>Machine Learning</subject><subject>Mechatronics</subject><subject>Natural Language Processing (NLP)</subject><subject>Robotics</subject><subject>Scientists</subject><subject>Search engines</subject><subject>Simulation and Modeling</subject><subject>Special Issue on Discovery Science 2022</subject><subject>Tables (data)</subject><subject>Words (language)</subject><issn>0885-6125</issn><issn>1573-0565</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kMtKxDAUhoMoWEdfwFXAdfTk3i5lcFQYcKO4DEmTjB1m2jFpBd_eaAV3rg4_57_Ah9AlhWsKoG8yhaYRBBgnoIRmBI5QRaUuUip5jCqoa0kUZfIUneW8BQCmalWh1euQPA57F7zv-k3GcUg4hTF14aNoPFo37WzC3o4WxzTsyzMHm9o3fJjcrmvt2A19Pkcn0e5yuPi9C_SyuntePpD10_3j8nZNWq74SIIFUWvtQIpWS8-4Y5KHhgXhtGUxRKU1rV2MNHpJRUN91FRy2ajgGGWeL9DV3HtIw_sU8mi2w5T6Mmk4UN4A50IVF5tdbRpyTiGaQ-r2Nn0aCuabl5l5mcLL_PAyUEJ8DuVi7jch_VX_k_oCRQdthg</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Berenguer, Alberto</creator><creator>Mazón, Jose-Norberto</creator><creator>Tomás, David</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2867-8329</orcidid></search><sort><creationdate>20240401</creationdate><title>Word embeddings for retrieving tabular data from research publications</title><author>Berenguer, Alberto ; Mazón, Jose-Norberto ; Tomás, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-ea04877b054c75d23b253e92e4b7a2fef67718bff1fd51491df7153596eb212d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial Intelligence</topic><topic>Computer Science</topic><topic>Control</topic><topic>Datasets</topic><topic>Machine Learning</topic><topic>Mechatronics</topic><topic>Natural Language Processing (NLP)</topic><topic>Robotics</topic><topic>Scientists</topic><topic>Search engines</topic><topic>Simulation and Modeling</topic><topic>Special Issue on Discovery Science 2022</topic><topic>Tables (data)</topic><topic>Words (language)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berenguer, Alberto</creatorcontrib><creatorcontrib>Mazón, Jose-Norberto</creatorcontrib><creatorcontrib>Tomás, David</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Machine learning</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berenguer, Alberto</au><au>Mazón, Jose-Norberto</au><au>Tomás, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Word embeddings for retrieving tabular data from research publications</atitle><jtitle>Machine learning</jtitle><stitle>Mach Learn</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>113</volume><issue>4</issue><spage>2227</spage><epage>2248</epage><pages>2227-2248</pages><issn>0885-6125</issn><eissn>1573-0565</eissn><abstract>Scientists face challenges when finding datasets related to their research problems due to the limitations of current dataset search engines. Existing tools for searching research datasets rely on publication content or metadata, do not considering the data contained in the publication in the form of tables. Moreover, scientists require more elaborate inputs and functionalities to retrieve different parts of an article, such as data presented in tables, based on their search purposes. Therefore, this paper proposes a novel approach to retrieve relevant tabular datasets from publications. The input of our system is a research problem stated as an abstract from a scientific paper, and the output is a set of relevant tables from publications that are related to the research problem. This approach aims to provide a better solution for scientists to find useful datasets that support them in addressing their research problems. To validate this approach, experiments were conducted using word embedding from different language models to calculate the semantic similarity between abstracts and tables. The results showed that contextual models significantly outperformed non-contextual models, especially when pre-trained with scientific data. Furthermore, the importance of context was found to be crucial for improving the results.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10994-023-06472-0</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-2867-8329</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0885-6125 |
ispartof | Machine learning, 2024-04, Vol.113 (4), p.2227-2248 |
issn | 0885-6125 1573-0565 |
language | eng |
recordid | cdi_proquest_journals_3013903346 |
source | SpringerLink Journals - AutoHoldings |
subjects | Artificial Intelligence Computer Science Control Datasets Machine Learning Mechatronics Natural Language Processing (NLP) Robotics Scientists Search engines Simulation and Modeling Special Issue on Discovery Science 2022 Tables (data) Words (language) |
title | Word embeddings for retrieving tabular data from research publications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T05%3A54%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Word%20embeddings%20for%20retrieving%20tabular%20data%20from%20research%20publications&rft.jtitle=Machine%20learning&rft.au=Berenguer,%20Alberto&rft.date=2024-04-01&rft.volume=113&rft.issue=4&rft.spage=2227&rft.epage=2248&rft.pages=2227-2248&rft.issn=0885-6125&rft.eissn=1573-0565&rft_id=info:doi/10.1007/s10994-023-06472-0&rft_dat=%3Cproquest_cross%3E3013903346%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3013903346&rft_id=info:pmid/&rfr_iscdi=true |