Adaptive defogging method for transmission line inspection images based on multilayer perceptual fusion

Existing image defogging methods generally have problems such as incomplete defogging and color distortion. To address this problem, this paper proposes an adaptive defogging method for transmission line images based on multilayer perceptual fusion, which uses dynamic convolution, dense residuals, a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2024-03, Vol.2717 (1), p.12025
Hauptverfasser: Zhang, Yilin, Yang, Haiwei, Xu, Yongsheng, Leng, Bingbing, Wang, Zeyi, Yu, Honghai, Gao, GuangMin, Wang, Ziming, Wen, Changzhe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 12025
container_title Journal of physics. Conference series
container_volume 2717
creator Zhang, Yilin
Yang, Haiwei
Xu, Yongsheng
Leng, Bingbing
Wang, Zeyi
Yu, Honghai
Gao, GuangMin
Wang, Ziming
Wen, Changzhe
description Existing image defogging methods generally have problems such as incomplete defogging and color distortion. To address this problem, this paper proposes an adaptive defogging method for transmission line images based on multilayer perceptual fusion, which uses dynamic convolution, dense residuals, and attention mechanism to design an adaptive feature enhancement network containing six Dy-namic Residual Components (DRC) and two Dy-namic Skip-Connected Feature Fusion Component (DSCFF) composed of adaptive feature enhancement network, which prevents the problem of features being forgotten in the early stage of the network, and enhances the expressive ability of the model. For the decoding network, the de-fogging effect of the model is further strengthened by introducing a decoder module based on the SOS enhancement model, and finally, by comparing the experiments with the current de-fogging methods with more advanced performance, the results show that the method has good de-fogging effect and can retain the image details better with high color retention.
doi_str_mv 10.1088/1742-6596/2717/1/012025
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_3006205524</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3006205524</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2745-983e5c02c00c95d692f134dcaec2a3340a7c5cc18451a305cf0d4f41f3975fbb3</originalsourceid><addsrcrecordid>eNqFkNtKxDAQhoMouK4-gwHvhNpJ0vRwuSweWVBQr0M2TWqWtqlJK-zb21JRBMHcJEO-f4b5EDoncEUgz2OSJTRKeZHGNCNZTGIgFCg_QIvvn8Pvd54fo5MQdgBsPNkCVatSdr390LjUxlWVbSvc6P7Nldg4j3sv29DYEKxrcW1bjW0bOq36qbaNrHTAWxl0ice6Gere1nKvPe60V7rrB1ljM0zhU3RkZB302de9RK831y_ru2jzeHu_Xm0iRbOER0XONFdAFYAqeJkW1BCWlEpqRSVjCchMcaVInnAiGXBloExMQgwrMm62W7ZEF3Pfzrv3QYde7Nzg23GkYAApBc5pMlLZTCnvQvDaiM6P2_i9ICAmq2LyJSZ3YrIqiJitjsnLOWld99P64Wn9_BsUXWlGmP0B_zfiE3MWiKg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3006205524</pqid></control><display><type>article</type><title>Adaptive defogging method for transmission line inspection images based on multilayer perceptual fusion</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Zhang, Yilin ; Yang, Haiwei ; Xu, Yongsheng ; Leng, Bingbing ; Wang, Zeyi ; Yu, Honghai ; Gao, GuangMin ; Wang, Ziming ; Wen, Changzhe</creator><creatorcontrib>Zhang, Yilin ; Yang, Haiwei ; Xu, Yongsheng ; Leng, Bingbing ; Wang, Zeyi ; Yu, Honghai ; Gao, GuangMin ; Wang, Ziming ; Wen, Changzhe</creatorcontrib><description>Existing image defogging methods generally have problems such as incomplete defogging and color distortion. To address this problem, this paper proposes an adaptive defogging method for transmission line images based on multilayer perceptual fusion, which uses dynamic convolution, dense residuals, and attention mechanism to design an adaptive feature enhancement network containing six Dy-namic Residual Components (DRC) and two Dy-namic Skip-Connected Feature Fusion Component (DSCFF) composed of adaptive feature enhancement network, which prevents the problem of features being forgotten in the early stage of the network, and enhances the expressive ability of the model. For the decoding network, the de-fogging effect of the model is further strengthened by introducing a decoder module based on the SOS enhancement model, and finally, by comparing the experiments with the current de-fogging methods with more advanced performance, the results show that the method has good de-fogging effect and can retain the image details better with high color retention.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/2717/1/012025</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Color ; Convolutional neural network ; Decoding ; Fogging ; Image defogging ; Image transmission ; Multilayer perception ; Multilayers ; SOS enhancement model ; Transmission lines</subject><ispartof>Journal of physics. Conference series, 2024-03, Vol.2717 (1), p.12025</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>Published under licence by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2745-983e5c02c00c95d692f134dcaec2a3340a7c5cc18451a305cf0d4f41f3975fbb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/2717/1/012025/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27901,27902,38845,38867,53815,53842</link.rule.ids></links><search><creatorcontrib>Zhang, Yilin</creatorcontrib><creatorcontrib>Yang, Haiwei</creatorcontrib><creatorcontrib>Xu, Yongsheng</creatorcontrib><creatorcontrib>Leng, Bingbing</creatorcontrib><creatorcontrib>Wang, Zeyi</creatorcontrib><creatorcontrib>Yu, Honghai</creatorcontrib><creatorcontrib>Gao, GuangMin</creatorcontrib><creatorcontrib>Wang, Ziming</creatorcontrib><creatorcontrib>Wen, Changzhe</creatorcontrib><title>Adaptive defogging method for transmission line inspection images based on multilayer perceptual fusion</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>Existing image defogging methods generally have problems such as incomplete defogging and color distortion. To address this problem, this paper proposes an adaptive defogging method for transmission line images based on multilayer perceptual fusion, which uses dynamic convolution, dense residuals, and attention mechanism to design an adaptive feature enhancement network containing six Dy-namic Residual Components (DRC) and two Dy-namic Skip-Connected Feature Fusion Component (DSCFF) composed of adaptive feature enhancement network, which prevents the problem of features being forgotten in the early stage of the network, and enhances the expressive ability of the model. For the decoding network, the de-fogging effect of the model is further strengthened by introducing a decoder module based on the SOS enhancement model, and finally, by comparing the experiments with the current de-fogging methods with more advanced performance, the results show that the method has good de-fogging effect and can retain the image details better with high color retention.</description><subject>Color</subject><subject>Convolutional neural network</subject><subject>Decoding</subject><subject>Fogging</subject><subject>Image defogging</subject><subject>Image transmission</subject><subject>Multilayer perception</subject><subject>Multilayers</subject><subject>SOS enhancement model</subject><subject>Transmission lines</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkNtKxDAQhoMouK4-gwHvhNpJ0vRwuSweWVBQr0M2TWqWtqlJK-zb21JRBMHcJEO-f4b5EDoncEUgz2OSJTRKeZHGNCNZTGIgFCg_QIvvn8Pvd54fo5MQdgBsPNkCVatSdr390LjUxlWVbSvc6P7Nldg4j3sv29DYEKxrcW1bjW0bOq36qbaNrHTAWxl0ice6Gere1nKvPe60V7rrB1ljM0zhU3RkZB302de9RK831y_ru2jzeHu_Xm0iRbOER0XONFdAFYAqeJkW1BCWlEpqRSVjCchMcaVInnAiGXBloExMQgwrMm62W7ZEF3Pfzrv3QYde7Nzg23GkYAApBc5pMlLZTCnvQvDaiM6P2_i9ICAmq2LyJSZ3YrIqiJitjsnLOWld99P64Wn9_BsUXWlGmP0B_zfiE3MWiKg</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Zhang, Yilin</creator><creator>Yang, Haiwei</creator><creator>Xu, Yongsheng</creator><creator>Leng, Bingbing</creator><creator>Wang, Zeyi</creator><creator>Yu, Honghai</creator><creator>Gao, GuangMin</creator><creator>Wang, Ziming</creator><creator>Wen, Changzhe</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20240301</creationdate><title>Adaptive defogging method for transmission line inspection images based on multilayer perceptual fusion</title><author>Zhang, Yilin ; Yang, Haiwei ; Xu, Yongsheng ; Leng, Bingbing ; Wang, Zeyi ; Yu, Honghai ; Gao, GuangMin ; Wang, Ziming ; Wen, Changzhe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2745-983e5c02c00c95d692f134dcaec2a3340a7c5cc18451a305cf0d4f41f3975fbb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Color</topic><topic>Convolutional neural network</topic><topic>Decoding</topic><topic>Fogging</topic><topic>Image defogging</topic><topic>Image transmission</topic><topic>Multilayer perception</topic><topic>Multilayers</topic><topic>SOS enhancement model</topic><topic>Transmission lines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yilin</creatorcontrib><creatorcontrib>Yang, Haiwei</creatorcontrib><creatorcontrib>Xu, Yongsheng</creatorcontrib><creatorcontrib>Leng, Bingbing</creatorcontrib><creatorcontrib>Wang, Zeyi</creatorcontrib><creatorcontrib>Yu, Honghai</creatorcontrib><creatorcontrib>Gao, GuangMin</creatorcontrib><creatorcontrib>Wang, Ziming</creatorcontrib><creatorcontrib>Wen, Changzhe</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yilin</au><au>Yang, Haiwei</au><au>Xu, Yongsheng</au><au>Leng, Bingbing</au><au>Wang, Zeyi</au><au>Yu, Honghai</au><au>Gao, GuangMin</au><au>Wang, Ziming</au><au>Wen, Changzhe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive defogging method for transmission line inspection images based on multilayer perceptual fusion</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2024-03-01</date><risdate>2024</risdate><volume>2717</volume><issue>1</issue><spage>12025</spage><pages>12025-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>Existing image defogging methods generally have problems such as incomplete defogging and color distortion. To address this problem, this paper proposes an adaptive defogging method for transmission line images based on multilayer perceptual fusion, which uses dynamic convolution, dense residuals, and attention mechanism to design an adaptive feature enhancement network containing six Dy-namic Residual Components (DRC) and two Dy-namic Skip-Connected Feature Fusion Component (DSCFF) composed of adaptive feature enhancement network, which prevents the problem of features being forgotten in the early stage of the network, and enhances the expressive ability of the model. For the decoding network, the de-fogging effect of the model is further strengthened by introducing a decoder module based on the SOS enhancement model, and finally, by comparing the experiments with the current de-fogging methods with more advanced performance, the results show that the method has good de-fogging effect and can retain the image details better with high color retention.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/2717/1/012025</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6588
ispartof Journal of physics. Conference series, 2024-03, Vol.2717 (1), p.12025
issn 1742-6588
1742-6596
language eng
recordid cdi_proquest_journals_3006205524
source IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Color
Convolutional neural network
Decoding
Fogging
Image defogging
Image transmission
Multilayer perception
Multilayers
SOS enhancement model
Transmission lines
title Adaptive defogging method for transmission line inspection images based on multilayer perceptual fusion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T11%3A00%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20defogging%20method%20for%20transmission%20line%20inspection%20images%20based%20on%20multilayer%20perceptual%20fusion&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Zhang,%20Yilin&rft.date=2024-03-01&rft.volume=2717&rft.issue=1&rft.spage=12025&rft.pages=12025-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/2717/1/012025&rft_dat=%3Cproquest_iop_j%3E3006205524%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3006205524&rft_id=info:pmid/&rfr_iscdi=true