Adaptive defogging method for transmission line inspection images based on multilayer perceptual fusion
Existing image defogging methods generally have problems such as incomplete defogging and color distortion. To address this problem, this paper proposes an adaptive defogging method for transmission line images based on multilayer perceptual fusion, which uses dynamic convolution, dense residuals, a...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Conference series 2024-03, Vol.2717 (1), p.12025 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 12025 |
container_title | Journal of physics. Conference series |
container_volume | 2717 |
creator | Zhang, Yilin Yang, Haiwei Xu, Yongsheng Leng, Bingbing Wang, Zeyi Yu, Honghai Gao, GuangMin Wang, Ziming Wen, Changzhe |
description | Existing image defogging methods generally have problems such as incomplete defogging and color distortion. To address this problem, this paper proposes an adaptive defogging method for transmission line images based on multilayer perceptual fusion, which uses dynamic convolution, dense residuals, and attention mechanism to design an adaptive feature enhancement network containing six Dy-namic Residual Components (DRC) and two Dy-namic Skip-Connected Feature Fusion Component (DSCFF) composed of adaptive feature enhancement network, which prevents the problem of features being forgotten in the early stage of the network, and enhances the expressive ability of the model. For the decoding network, the de-fogging effect of the model is further strengthened by introducing a decoder module based on the SOS enhancement model, and finally, by comparing the experiments with the current de-fogging methods with more advanced performance, the results show that the method has good de-fogging effect and can retain the image details better with high color retention. |
doi_str_mv | 10.1088/1742-6596/2717/1/012025 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_3006205524</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3006205524</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2745-983e5c02c00c95d692f134dcaec2a3340a7c5cc18451a305cf0d4f41f3975fbb3</originalsourceid><addsrcrecordid>eNqFkNtKxDAQhoMouK4-gwHvhNpJ0vRwuSweWVBQr0M2TWqWtqlJK-zb21JRBMHcJEO-f4b5EDoncEUgz2OSJTRKeZHGNCNZTGIgFCg_QIvvn8Pvd54fo5MQdgBsPNkCVatSdr390LjUxlWVbSvc6P7Nldg4j3sv29DYEKxrcW1bjW0bOq36qbaNrHTAWxl0ice6Gere1nKvPe60V7rrB1ljM0zhU3RkZB302de9RK831y_ru2jzeHu_Xm0iRbOER0XONFdAFYAqeJkW1BCWlEpqRSVjCchMcaVInnAiGXBloExMQgwrMm62W7ZEF3Pfzrv3QYde7Nzg23GkYAApBc5pMlLZTCnvQvDaiM6P2_i9ICAmq2LyJSZ3YrIqiJitjsnLOWld99P64Wn9_BsUXWlGmP0B_zfiE3MWiKg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3006205524</pqid></control><display><type>article</type><title>Adaptive defogging method for transmission line inspection images based on multilayer perceptual fusion</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Zhang, Yilin ; Yang, Haiwei ; Xu, Yongsheng ; Leng, Bingbing ; Wang, Zeyi ; Yu, Honghai ; Gao, GuangMin ; Wang, Ziming ; Wen, Changzhe</creator><creatorcontrib>Zhang, Yilin ; Yang, Haiwei ; Xu, Yongsheng ; Leng, Bingbing ; Wang, Zeyi ; Yu, Honghai ; Gao, GuangMin ; Wang, Ziming ; Wen, Changzhe</creatorcontrib><description>Existing image defogging methods generally have problems such as incomplete defogging and color distortion. To address this problem, this paper proposes an adaptive defogging method for transmission line images based on multilayer perceptual fusion, which uses dynamic convolution, dense residuals, and attention mechanism to design an adaptive feature enhancement network containing six Dy-namic Residual Components (DRC) and two Dy-namic Skip-Connected Feature Fusion Component (DSCFF) composed of adaptive feature enhancement network, which prevents the problem of features being forgotten in the early stage of the network, and enhances the expressive ability of the model. For the decoding network, the de-fogging effect of the model is further strengthened by introducing a decoder module based on the SOS enhancement model, and finally, by comparing the experiments with the current de-fogging methods with more advanced performance, the results show that the method has good de-fogging effect and can retain the image details better with high color retention.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/2717/1/012025</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Color ; Convolutional neural network ; Decoding ; Fogging ; Image defogging ; Image transmission ; Multilayer perception ; Multilayers ; SOS enhancement model ; Transmission lines</subject><ispartof>Journal of physics. Conference series, 2024-03, Vol.2717 (1), p.12025</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>Published under licence by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2745-983e5c02c00c95d692f134dcaec2a3340a7c5cc18451a305cf0d4f41f3975fbb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/2717/1/012025/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27901,27902,38845,38867,53815,53842</link.rule.ids></links><search><creatorcontrib>Zhang, Yilin</creatorcontrib><creatorcontrib>Yang, Haiwei</creatorcontrib><creatorcontrib>Xu, Yongsheng</creatorcontrib><creatorcontrib>Leng, Bingbing</creatorcontrib><creatorcontrib>Wang, Zeyi</creatorcontrib><creatorcontrib>Yu, Honghai</creatorcontrib><creatorcontrib>Gao, GuangMin</creatorcontrib><creatorcontrib>Wang, Ziming</creatorcontrib><creatorcontrib>Wen, Changzhe</creatorcontrib><title>Adaptive defogging method for transmission line inspection images based on multilayer perceptual fusion</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>Existing image defogging methods generally have problems such as incomplete defogging and color distortion. To address this problem, this paper proposes an adaptive defogging method for transmission line images based on multilayer perceptual fusion, which uses dynamic convolution, dense residuals, and attention mechanism to design an adaptive feature enhancement network containing six Dy-namic Residual Components (DRC) and two Dy-namic Skip-Connected Feature Fusion Component (DSCFF) composed of adaptive feature enhancement network, which prevents the problem of features being forgotten in the early stage of the network, and enhances the expressive ability of the model. For the decoding network, the de-fogging effect of the model is further strengthened by introducing a decoder module based on the SOS enhancement model, and finally, by comparing the experiments with the current de-fogging methods with more advanced performance, the results show that the method has good de-fogging effect and can retain the image details better with high color retention.</description><subject>Color</subject><subject>Convolutional neural network</subject><subject>Decoding</subject><subject>Fogging</subject><subject>Image defogging</subject><subject>Image transmission</subject><subject>Multilayer perception</subject><subject>Multilayers</subject><subject>SOS enhancement model</subject><subject>Transmission lines</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkNtKxDAQhoMouK4-gwHvhNpJ0vRwuSweWVBQr0M2TWqWtqlJK-zb21JRBMHcJEO-f4b5EDoncEUgz2OSJTRKeZHGNCNZTGIgFCg_QIvvn8Pvd54fo5MQdgBsPNkCVatSdr390LjUxlWVbSvc6P7Nldg4j3sv29DYEKxrcW1bjW0bOq36qbaNrHTAWxl0ice6Gere1nKvPe60V7rrB1ljM0zhU3RkZB302de9RK831y_ru2jzeHu_Xm0iRbOER0XONFdAFYAqeJkW1BCWlEpqRSVjCchMcaVInnAiGXBloExMQgwrMm62W7ZEF3Pfzrv3QYde7Nzg23GkYAApBc5pMlLZTCnvQvDaiM6P2_i9ICAmq2LyJSZ3YrIqiJitjsnLOWld99P64Wn9_BsUXWlGmP0B_zfiE3MWiKg</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Zhang, Yilin</creator><creator>Yang, Haiwei</creator><creator>Xu, Yongsheng</creator><creator>Leng, Bingbing</creator><creator>Wang, Zeyi</creator><creator>Yu, Honghai</creator><creator>Gao, GuangMin</creator><creator>Wang, Ziming</creator><creator>Wen, Changzhe</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20240301</creationdate><title>Adaptive defogging method for transmission line inspection images based on multilayer perceptual fusion</title><author>Zhang, Yilin ; Yang, Haiwei ; Xu, Yongsheng ; Leng, Bingbing ; Wang, Zeyi ; Yu, Honghai ; Gao, GuangMin ; Wang, Ziming ; Wen, Changzhe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2745-983e5c02c00c95d692f134dcaec2a3340a7c5cc18451a305cf0d4f41f3975fbb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Color</topic><topic>Convolutional neural network</topic><topic>Decoding</topic><topic>Fogging</topic><topic>Image defogging</topic><topic>Image transmission</topic><topic>Multilayer perception</topic><topic>Multilayers</topic><topic>SOS enhancement model</topic><topic>Transmission lines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yilin</creatorcontrib><creatorcontrib>Yang, Haiwei</creatorcontrib><creatorcontrib>Xu, Yongsheng</creatorcontrib><creatorcontrib>Leng, Bingbing</creatorcontrib><creatorcontrib>Wang, Zeyi</creatorcontrib><creatorcontrib>Yu, Honghai</creatorcontrib><creatorcontrib>Gao, GuangMin</creatorcontrib><creatorcontrib>Wang, Ziming</creatorcontrib><creatorcontrib>Wen, Changzhe</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yilin</au><au>Yang, Haiwei</au><au>Xu, Yongsheng</au><au>Leng, Bingbing</au><au>Wang, Zeyi</au><au>Yu, Honghai</au><au>Gao, GuangMin</au><au>Wang, Ziming</au><au>Wen, Changzhe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive defogging method for transmission line inspection images based on multilayer perceptual fusion</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2024-03-01</date><risdate>2024</risdate><volume>2717</volume><issue>1</issue><spage>12025</spage><pages>12025-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>Existing image defogging methods generally have problems such as incomplete defogging and color distortion. To address this problem, this paper proposes an adaptive defogging method for transmission line images based on multilayer perceptual fusion, which uses dynamic convolution, dense residuals, and attention mechanism to design an adaptive feature enhancement network containing six Dy-namic Residual Components (DRC) and two Dy-namic Skip-Connected Feature Fusion Component (DSCFF) composed of adaptive feature enhancement network, which prevents the problem of features being forgotten in the early stage of the network, and enhances the expressive ability of the model. For the decoding network, the de-fogging effect of the model is further strengthened by introducing a decoder module based on the SOS enhancement model, and finally, by comparing the experiments with the current de-fogging methods with more advanced performance, the results show that the method has good de-fogging effect and can retain the image details better with high color retention.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/2717/1/012025</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-6588 |
ispartof | Journal of physics. Conference series, 2024-03, Vol.2717 (1), p.12025 |
issn | 1742-6588 1742-6596 |
language | eng |
recordid | cdi_proquest_journals_3006205524 |
source | IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Color Convolutional neural network Decoding Fogging Image defogging Image transmission Multilayer perception Multilayers SOS enhancement model Transmission lines |
title | Adaptive defogging method for transmission line inspection images based on multilayer perceptual fusion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T11%3A00%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20defogging%20method%20for%20transmission%20line%20inspection%20images%20based%20on%20multilayer%20perceptual%20fusion&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Zhang,%20Yilin&rft.date=2024-03-01&rft.volume=2717&rft.issue=1&rft.spage=12025&rft.pages=12025-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/2717/1/012025&rft_dat=%3Cproquest_iop_j%3E3006205524%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3006205524&rft_id=info:pmid/&rfr_iscdi=true |