Soil Moisture Forecast Using Transfer Learning: An Application in the High Tropical Andes
Soil moisture is a critical variable in the hydrological cycle and the climate system, significantly impacting water resources, ecosystem functioning, and the occurrence of extreme events. However, soil moisture data are often scarce, and soil water dynamics are not fully understood in mountainous r...
Gespeichert in:
Veröffentlicht in: | Water (Basel) 2024-03, Vol.16 (6), p.832 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | 832 |
container_title | Water (Basel) |
container_volume | 16 |
creator | Escobar-González, Diego Villacís, Marcos Páez-Bimos, Sebastián Jácome, Gabriel González-Vergara, Juan Encalada, Claudia Vanacker, Veerle |
description | Soil moisture is a critical variable in the hydrological cycle and the climate system, significantly impacting water resources, ecosystem functioning, and the occurrence of extreme events. However, soil moisture data are often scarce, and soil water dynamics are not fully understood in mountainous regions such as the tropical Andes of Ecuador. This study aims to model and predict soil moisture dynamics using in situ-collected hydrometeorological data for training and data-driven machine-learning techniques. Our results highlight the fundamental role of vegetation in controlling soil moisture dynamics and significant differences in soil water balance related to vegetation types and topography. A baseline model was developed to predict soil moisture dynamics using neural network techniques. Subsequently, by employing transfer-learning techniques, this model was effectively applied to different soil horizons and profiles, demonstrating its generalization capacity and adaptability. The use of neural network schemes and knowledge transfer techniques allowed us to develop predictive models for soil moisture trained on in situ-collected hydrometeorological data. The transfer-learning technique, which leveraged the knowledge from a pre-trained model to a model with a similar domain, yielded results with errors on the order of 1×10−6 |
doi_str_mv | 10.3390/w16060832 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3005148918</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A788255333</galeid><sourcerecordid>A788255333</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-ea66e2b8bd53bad8231b2dabf59ea48336895b0bb304f60594fbb395d3824e043</originalsourceid><addsrcrecordid>eNpNkE9LAzEQxYMoWGoPfoOAJw_V_N1mvS3FWqHiwfbgaUl2J23KNlmTLeK3N1IRZw7zePxmBh5C15TccV6S-09akIIozs7QiJEZnwoh6Pk_fYkmKe1JLlEqJckIvb8F1-GX4NJwjIAXIUKj04A3yfktXkftk4WIV6Cjz84Drjyu-r5zjR5c8Nh5POwAL912l-nQZ7_LTAvpCl1Y3SWY_M4x2iwe1_PldPX69DyvVtOGlXSYgi4KYEaZVnKjW8U4NazVxsoStFCcF6qUhhjDibAFkaWwWZey5YoJIIKP0c3pbh_DxxHSUO_DMfr8suaESCpUSVWm7k7UVndQO2_DEHWTu4WDa4IH67JfzZRiUvJcY3R7WmhiSCmCrfvoDjp-1ZTUP2nXf2nzb0eMb94</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3005148918</pqid></control><display><type>article</type><title>Soil Moisture Forecast Using Transfer Learning: An Application in the High Tropical Andes</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB Electronic Journals Library</source><creator>Escobar-González, Diego ; Villacís, Marcos ; Páez-Bimos, Sebastián ; Jácome, Gabriel ; González-Vergara, Juan ; Encalada, Claudia ; Vanacker, Veerle</creator><creatorcontrib>Escobar-González, Diego ; Villacís, Marcos ; Páez-Bimos, Sebastián ; Jácome, Gabriel ; González-Vergara, Juan ; Encalada, Claudia ; Vanacker, Veerle</creatorcontrib><description>Soil moisture is a critical variable in the hydrological cycle and the climate system, significantly impacting water resources, ecosystem functioning, and the occurrence of extreme events. However, soil moisture data are often scarce, and soil water dynamics are not fully understood in mountainous regions such as the tropical Andes of Ecuador. This study aims to model and predict soil moisture dynamics using in situ-collected hydrometeorological data for training and data-driven machine-learning techniques. Our results highlight the fundamental role of vegetation in controlling soil moisture dynamics and significant differences in soil water balance related to vegetation types and topography. A baseline model was developed to predict soil moisture dynamics using neural network techniques. Subsequently, by employing transfer-learning techniques, this model was effectively applied to different soil horizons and profiles, demonstrating its generalization capacity and adaptability. The use of neural network schemes and knowledge transfer techniques allowed us to develop predictive models for soil moisture trained on in situ-collected hydrometeorological data. The transfer-learning technique, which leveraged the knowledge from a pre-trained model to a model with a similar domain, yielded results with errors on the order of 1×10−6<ϵ<1×10−3. For the training data, the forecast of the base network demonstrated excellent results, with the lowest magnitude error metric RMSE equal to 4.77×10−6, and NSE and KGE both equal to 0.97. These models show promising potential to accurately predict short-term soil moisture dynamics with potential applications for natural hazard monitoring in mountainous regions.</description><identifier>ISSN: 2073-4441</identifier><identifier>EISSN: 2073-4441</identifier><identifier>DOI: 10.3390/w16060832</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Biogeochemical cycles ; Climate change ; Drought ; Droughts ; Ecosystems ; Ecuador ; Extreme weather ; Forecasting ; Global temperature changes ; Hydrology ; Neural networks ; Rain ; Runoff ; Soil moisture ; Variables ; Vegetation ; Water conservation ; Water shortages</subject><ispartof>Water (Basel), 2024-03, Vol.16 (6), p.832</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c291t-ea66e2b8bd53bad8231b2dabf59ea48336895b0bb304f60594fbb395d3824e043</cites><orcidid>0000-0003-4675-7765 ; 0000-0002-4496-7323 ; 0009-0001-7053-9699 ; 0000-0002-8237-3446 ; 0000-0002-6796-9890 ; 0000-0001-8305-6226 ; 0000-0003-4833-3923</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Escobar-González, Diego</creatorcontrib><creatorcontrib>Villacís, Marcos</creatorcontrib><creatorcontrib>Páez-Bimos, Sebastián</creatorcontrib><creatorcontrib>Jácome, Gabriel</creatorcontrib><creatorcontrib>González-Vergara, Juan</creatorcontrib><creatorcontrib>Encalada, Claudia</creatorcontrib><creatorcontrib>Vanacker, Veerle</creatorcontrib><title>Soil Moisture Forecast Using Transfer Learning: An Application in the High Tropical Andes</title><title>Water (Basel)</title><description>Soil moisture is a critical variable in the hydrological cycle and the climate system, significantly impacting water resources, ecosystem functioning, and the occurrence of extreme events. However, soil moisture data are often scarce, and soil water dynamics are not fully understood in mountainous regions such as the tropical Andes of Ecuador. This study aims to model and predict soil moisture dynamics using in situ-collected hydrometeorological data for training and data-driven machine-learning techniques. Our results highlight the fundamental role of vegetation in controlling soil moisture dynamics and significant differences in soil water balance related to vegetation types and topography. A baseline model was developed to predict soil moisture dynamics using neural network techniques. Subsequently, by employing transfer-learning techniques, this model was effectively applied to different soil horizons and profiles, demonstrating its generalization capacity and adaptability. The use of neural network schemes and knowledge transfer techniques allowed us to develop predictive models for soil moisture trained on in situ-collected hydrometeorological data. The transfer-learning technique, which leveraged the knowledge from a pre-trained model to a model with a similar domain, yielded results with errors on the order of 1×10−6<ϵ<1×10−3. For the training data, the forecast of the base network demonstrated excellent results, with the lowest magnitude error metric RMSE equal to 4.77×10−6, and NSE and KGE both equal to 0.97. These models show promising potential to accurately predict short-term soil moisture dynamics with potential applications for natural hazard monitoring in mountainous regions.</description><subject>Biogeochemical cycles</subject><subject>Climate change</subject><subject>Drought</subject><subject>Droughts</subject><subject>Ecosystems</subject><subject>Ecuador</subject><subject>Extreme weather</subject><subject>Forecasting</subject><subject>Global temperature changes</subject><subject>Hydrology</subject><subject>Neural networks</subject><subject>Rain</subject><subject>Runoff</subject><subject>Soil moisture</subject><subject>Variables</subject><subject>Vegetation</subject><subject>Water conservation</subject><subject>Water shortages</subject><issn>2073-4441</issn><issn>2073-4441</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpNkE9LAzEQxYMoWGoPfoOAJw_V_N1mvS3FWqHiwfbgaUl2J23KNlmTLeK3N1IRZw7zePxmBh5C15TccV6S-09akIIozs7QiJEZnwoh6Pk_fYkmKe1JLlEqJckIvb8F1-GX4NJwjIAXIUKj04A3yfktXkftk4WIV6Cjz84Drjyu-r5zjR5c8Nh5POwAL912l-nQZ7_LTAvpCl1Y3SWY_M4x2iwe1_PldPX69DyvVtOGlXSYgi4KYEaZVnKjW8U4NazVxsoStFCcF6qUhhjDibAFkaWwWZey5YoJIIKP0c3pbh_DxxHSUO_DMfr8suaESCpUSVWm7k7UVndQO2_DEHWTu4WDa4IH67JfzZRiUvJcY3R7WmhiSCmCrfvoDjp-1ZTUP2nXf2nzb0eMb94</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Escobar-González, Diego</creator><creator>Villacís, Marcos</creator><creator>Páez-Bimos, Sebastián</creator><creator>Jácome, Gabriel</creator><creator>González-Vergara, Juan</creator><creator>Encalada, Claudia</creator><creator>Vanacker, Veerle</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-4675-7765</orcidid><orcidid>https://orcid.org/0000-0002-4496-7323</orcidid><orcidid>https://orcid.org/0009-0001-7053-9699</orcidid><orcidid>https://orcid.org/0000-0002-8237-3446</orcidid><orcidid>https://orcid.org/0000-0002-6796-9890</orcidid><orcidid>https://orcid.org/0000-0001-8305-6226</orcidid><orcidid>https://orcid.org/0000-0003-4833-3923</orcidid></search><sort><creationdate>20240301</creationdate><title>Soil Moisture Forecast Using Transfer Learning: An Application in the High Tropical Andes</title><author>Escobar-González, Diego ; Villacís, Marcos ; Páez-Bimos, Sebastián ; Jácome, Gabriel ; González-Vergara, Juan ; Encalada, Claudia ; Vanacker, Veerle</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-ea66e2b8bd53bad8231b2dabf59ea48336895b0bb304f60594fbb395d3824e043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biogeochemical cycles</topic><topic>Climate change</topic><topic>Drought</topic><topic>Droughts</topic><topic>Ecosystems</topic><topic>Ecuador</topic><topic>Extreme weather</topic><topic>Forecasting</topic><topic>Global temperature changes</topic><topic>Hydrology</topic><topic>Neural networks</topic><topic>Rain</topic><topic>Runoff</topic><topic>Soil moisture</topic><topic>Variables</topic><topic>Vegetation</topic><topic>Water conservation</topic><topic>Water shortages</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Escobar-González, Diego</creatorcontrib><creatorcontrib>Villacís, Marcos</creatorcontrib><creatorcontrib>Páez-Bimos, Sebastián</creatorcontrib><creatorcontrib>Jácome, Gabriel</creatorcontrib><creatorcontrib>González-Vergara, Juan</creatorcontrib><creatorcontrib>Encalada, Claudia</creatorcontrib><creatorcontrib>Vanacker, Veerle</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Water (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Escobar-González, Diego</au><au>Villacís, Marcos</au><au>Páez-Bimos, Sebastián</au><au>Jácome, Gabriel</au><au>González-Vergara, Juan</au><au>Encalada, Claudia</au><au>Vanacker, Veerle</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Soil Moisture Forecast Using Transfer Learning: An Application in the High Tropical Andes</atitle><jtitle>Water (Basel)</jtitle><date>2024-03-01</date><risdate>2024</risdate><volume>16</volume><issue>6</issue><spage>832</spage><pages>832-</pages><issn>2073-4441</issn><eissn>2073-4441</eissn><abstract>Soil moisture is a critical variable in the hydrological cycle and the climate system, significantly impacting water resources, ecosystem functioning, and the occurrence of extreme events. However, soil moisture data are often scarce, and soil water dynamics are not fully understood in mountainous regions such as the tropical Andes of Ecuador. This study aims to model and predict soil moisture dynamics using in situ-collected hydrometeorological data for training and data-driven machine-learning techniques. Our results highlight the fundamental role of vegetation in controlling soil moisture dynamics and significant differences in soil water balance related to vegetation types and topography. A baseline model was developed to predict soil moisture dynamics using neural network techniques. Subsequently, by employing transfer-learning techniques, this model was effectively applied to different soil horizons and profiles, demonstrating its generalization capacity and adaptability. The use of neural network schemes and knowledge transfer techniques allowed us to develop predictive models for soil moisture trained on in situ-collected hydrometeorological data. The transfer-learning technique, which leveraged the knowledge from a pre-trained model to a model with a similar domain, yielded results with errors on the order of 1×10−6<ϵ<1×10−3. For the training data, the forecast of the base network demonstrated excellent results, with the lowest magnitude error metric RMSE equal to 4.77×10−6, and NSE and KGE both equal to 0.97. These models show promising potential to accurately predict short-term soil moisture dynamics with potential applications for natural hazard monitoring in mountainous regions.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/w16060832</doi><orcidid>https://orcid.org/0000-0003-4675-7765</orcidid><orcidid>https://orcid.org/0000-0002-4496-7323</orcidid><orcidid>https://orcid.org/0009-0001-7053-9699</orcidid><orcidid>https://orcid.org/0000-0002-8237-3446</orcidid><orcidid>https://orcid.org/0000-0002-6796-9890</orcidid><orcidid>https://orcid.org/0000-0001-8305-6226</orcidid><orcidid>https://orcid.org/0000-0003-4833-3923</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4441 |
ispartof | Water (Basel), 2024-03, Vol.16 (6), p.832 |
issn | 2073-4441 2073-4441 |
language | eng |
recordid | cdi_proquest_journals_3005148918 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB Electronic Journals Library |
subjects | Biogeochemical cycles Climate change Drought Droughts Ecosystems Ecuador Extreme weather Forecasting Global temperature changes Hydrology Neural networks Rain Runoff Soil moisture Variables Vegetation Water conservation Water shortages |
title | Soil Moisture Forecast Using Transfer Learning: An Application in the High Tropical Andes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A31%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Soil%20Moisture%20Forecast%20Using%20Transfer%20Learning:%20An%20Application%20in%20the%20High%20Tropical%20Andes&rft.jtitle=Water%20(Basel)&rft.au=Escobar-Gonz%C3%A1lez,%20Diego&rft.date=2024-03-01&rft.volume=16&rft.issue=6&rft.spage=832&rft.pages=832-&rft.issn=2073-4441&rft.eissn=2073-4441&rft_id=info:doi/10.3390/w16060832&rft_dat=%3Cgale_proqu%3EA788255333%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3005148918&rft_id=info:pmid/&rft_galeid=A788255333&rfr_iscdi=true |