Zr-doped nickel oxide nanostructures: probing the structure and electrochemical properties
In this report, the Zr-doped nickel oxide nanoparticles were successfully synthesized via the chemical co-precipitation method. The obtained nanostructures crystallized into the face-centred cubic structures, with space group Fm-3 m. The decrease in average crystallite size and the spherical grains...
Gespeichert in:
Veröffentlicht in: | Chemical papers 2024-04, Vol.78 (5), p.2987-3002 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3002 |
---|---|
container_issue | 5 |
container_start_page | 2987 |
container_title | Chemical papers |
container_volume | 78 |
creator | Shah, Mujtaba Manzoor Gupta, Dhirendra Kumar Ali, Raja Nisar Husain, Shahid Rather, Mehraj ud Din |
description | In this report, the Zr-doped nickel oxide nanoparticles were successfully synthesized via the chemical co-precipitation method. The obtained nanostructures crystallized into the face-centred cubic structures, with space group Fm-3 m. The decrease in average crystallite size and the spherical grains with less agglomeration was obtained by Zr-doping. The presence of a peak in the FT-IR spectra at 494 cm
−1
confirmed the formation of the NiO phase. An increase in bandgap energy in doped nanostructures is due to the Burstein–Moss shift. By Zr-doping, the reduction in the saturation magnetization was observed in NiO nanoparticles. The cyclic voltammetry and galvanostatic charge–discharge measurements were used to evaluate the electrochemical properties of the prepared electrodes. For the 6% Zr-doped NiO electrode, a larger specific capacitance (735 Fg
−1
) was obtained, compared to the pure NiO (588 Fg
−1
) at a scan rate of 10 mVs
−1
. In the same electrode, an energy storage density of 15 Whkg
−1
at a power density of 370 Wkg
−1
was obtained. In conclusion, the Zr-doped NiO nanostructures having small crystallite and grain size, with improved electrochemical properties and the superior energy storage density, are potential electrode materials for energy storage devices. |
doi_str_mv | 10.1007/s11696-023-03287-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3004892912</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3004892912</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-bc79d0100858b5147b01db2be84d142a6c60f61af2ea4cad089056012ed6c0ec3</originalsourceid><addsrcrecordid>eNp9kEFLxDAQhYMouK7-AU8Bz9FJ0qatN1l0FRa86GUvIU2mu127bU1a0H9v1orevMzA8N4b3kfIJYdrDpDdBM5VoRgIyUCKPGNwRGZcSsUKyNJjMgOpFFMyFafkLIQdQJJACjOyXnvmuh4dbWv7hg3tPmqHtDVtFwY_2mH0GG5p77uybjd02CL9vVPTOooN2sF3dov72prmoOzRDzWGc3JSmSbgxc-ek9eH-5fFI1s9L58WdytmRQYDK21WOIgt8jQvU55kJXBXihLzxPFEGGUVVIqbSqBJrHGQF5Aq4AKdsoBWzsnVlBtfv48YBr3rRt_Gl1rGnnkhCi6iSkwq67sQPFa69_Xe-E_NQR8Y6omhjgz1N8M450ROphDF7Qb9X_Q_ri-OsXXC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3004892912</pqid></control><display><type>article</type><title>Zr-doped nickel oxide nanostructures: probing the structure and electrochemical properties</title><source>SpringerLink Journals - AutoHoldings</source><creator>Shah, Mujtaba Manzoor ; Gupta, Dhirendra Kumar ; Ali, Raja Nisar ; Husain, Shahid ; Rather, Mehraj ud Din</creator><creatorcontrib>Shah, Mujtaba Manzoor ; Gupta, Dhirendra Kumar ; Ali, Raja Nisar ; Husain, Shahid ; Rather, Mehraj ud Din</creatorcontrib><description>In this report, the Zr-doped nickel oxide nanoparticles were successfully synthesized via the chemical co-precipitation method. The obtained nanostructures crystallized into the face-centred cubic structures, with space group Fm-3 m. The decrease in average crystallite size and the spherical grains with less agglomeration was obtained by Zr-doping. The presence of a peak in the FT-IR spectra at 494 cm
−1
confirmed the formation of the NiO phase. An increase in bandgap energy in doped nanostructures is due to the Burstein–Moss shift. By Zr-doping, the reduction in the saturation magnetization was observed in NiO nanoparticles. The cyclic voltammetry and galvanostatic charge–discharge measurements were used to evaluate the electrochemical properties of the prepared electrodes. For the 6% Zr-doped NiO electrode, a larger specific capacitance (735 Fg
−1
) was obtained, compared to the pure NiO (588 Fg
−1
) at a scan rate of 10 mVs
−1
. In the same electrode, an energy storage density of 15 Whkg
−1
at a power density of 370 Wkg
−1
was obtained. In conclusion, the Zr-doped NiO nanostructures having small crystallite and grain size, with improved electrochemical properties and the superior energy storage density, are potential electrode materials for energy storage devices.</description><identifier>ISSN: 0366-6352</identifier><identifier>EISSN: 1336-9075</identifier><identifier>EISSN: 2585-7290</identifier><identifier>DOI: 10.1007/s11696-023-03287-0</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Biochemistry ; Biotechnology ; Chemical synthesis ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Crystallites ; Crystallization ; Doping ; Electrochemical analysis ; Electrode materials ; Electrodes ; Electrons ; Energy storage ; Grain size ; Industrial Chemistry/Chemical Engineering ; Infrared spectroscopy ; Magnetic saturation ; Materials Science ; Medicinal Chemistry ; Nanoparticles ; Nanostructure ; Nickel oxides ; Original Paper</subject><ispartof>Chemical papers, 2024-04, Vol.78 (5), p.2987-3002</ispartof><rights>The Author(s), under exclusive licence to the Institute of Chemistry, Slovak Academy of Sciences 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-bc79d0100858b5147b01db2be84d142a6c60f61af2ea4cad089056012ed6c0ec3</cites><orcidid>0000-0001-6929-0577</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11696-023-03287-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11696-023-03287-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Shah, Mujtaba Manzoor</creatorcontrib><creatorcontrib>Gupta, Dhirendra Kumar</creatorcontrib><creatorcontrib>Ali, Raja Nisar</creatorcontrib><creatorcontrib>Husain, Shahid</creatorcontrib><creatorcontrib>Rather, Mehraj ud Din</creatorcontrib><title>Zr-doped nickel oxide nanostructures: probing the structure and electrochemical properties</title><title>Chemical papers</title><addtitle>Chem. Pap</addtitle><description>In this report, the Zr-doped nickel oxide nanoparticles were successfully synthesized via the chemical co-precipitation method. The obtained nanostructures crystallized into the face-centred cubic structures, with space group Fm-3 m. The decrease in average crystallite size and the spherical grains with less agglomeration was obtained by Zr-doping. The presence of a peak in the FT-IR spectra at 494 cm
−1
confirmed the formation of the NiO phase. An increase in bandgap energy in doped nanostructures is due to the Burstein–Moss shift. By Zr-doping, the reduction in the saturation magnetization was observed in NiO nanoparticles. The cyclic voltammetry and galvanostatic charge–discharge measurements were used to evaluate the electrochemical properties of the prepared electrodes. For the 6% Zr-doped NiO electrode, a larger specific capacitance (735 Fg
−1
) was obtained, compared to the pure NiO (588 Fg
−1
) at a scan rate of 10 mVs
−1
. In the same electrode, an energy storage density of 15 Whkg
−1
at a power density of 370 Wkg
−1
was obtained. In conclusion, the Zr-doped NiO nanostructures having small crystallite and grain size, with improved electrochemical properties and the superior energy storage density, are potential electrode materials for energy storage devices.</description><subject>Biochemistry</subject><subject>Biotechnology</subject><subject>Chemical synthesis</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Crystallites</subject><subject>Crystallization</subject><subject>Doping</subject><subject>Electrochemical analysis</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Electrons</subject><subject>Energy storage</subject><subject>Grain size</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Infrared spectroscopy</subject><subject>Magnetic saturation</subject><subject>Materials Science</subject><subject>Medicinal Chemistry</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Nickel oxides</subject><subject>Original Paper</subject><issn>0366-6352</issn><issn>1336-9075</issn><issn>2585-7290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLxDAQhYMouK7-AU8Bz9FJ0qatN1l0FRa86GUvIU2mu127bU1a0H9v1orevMzA8N4b3kfIJYdrDpDdBM5VoRgIyUCKPGNwRGZcSsUKyNJjMgOpFFMyFafkLIQdQJJACjOyXnvmuh4dbWv7hg3tPmqHtDVtFwY_2mH0GG5p77uybjd02CL9vVPTOooN2sF3dov72prmoOzRDzWGc3JSmSbgxc-ek9eH-5fFI1s9L58WdytmRQYDK21WOIgt8jQvU55kJXBXihLzxPFEGGUVVIqbSqBJrHGQF5Aq4AKdsoBWzsnVlBtfv48YBr3rRt_Gl1rGnnkhCi6iSkwq67sQPFa69_Xe-E_NQR8Y6omhjgz1N8M450ROphDF7Qb9X_Q_ri-OsXXC</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Shah, Mujtaba Manzoor</creator><creator>Gupta, Dhirendra Kumar</creator><creator>Ali, Raja Nisar</creator><creator>Husain, Shahid</creator><creator>Rather, Mehraj ud Din</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6929-0577</orcidid></search><sort><creationdate>20240401</creationdate><title>Zr-doped nickel oxide nanostructures: probing the structure and electrochemical properties</title><author>Shah, Mujtaba Manzoor ; Gupta, Dhirendra Kumar ; Ali, Raja Nisar ; Husain, Shahid ; Rather, Mehraj ud Din</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-bc79d0100858b5147b01db2be84d142a6c60f61af2ea4cad089056012ed6c0ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biochemistry</topic><topic>Biotechnology</topic><topic>Chemical synthesis</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Crystallites</topic><topic>Crystallization</topic><topic>Doping</topic><topic>Electrochemical analysis</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Electrons</topic><topic>Energy storage</topic><topic>Grain size</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Infrared spectroscopy</topic><topic>Magnetic saturation</topic><topic>Materials Science</topic><topic>Medicinal Chemistry</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Nickel oxides</topic><topic>Original Paper</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shah, Mujtaba Manzoor</creatorcontrib><creatorcontrib>Gupta, Dhirendra Kumar</creatorcontrib><creatorcontrib>Ali, Raja Nisar</creatorcontrib><creatorcontrib>Husain, Shahid</creatorcontrib><creatorcontrib>Rather, Mehraj ud Din</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Chemical papers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shah, Mujtaba Manzoor</au><au>Gupta, Dhirendra Kumar</au><au>Ali, Raja Nisar</au><au>Husain, Shahid</au><au>Rather, Mehraj ud Din</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Zr-doped nickel oxide nanostructures: probing the structure and electrochemical properties</atitle><jtitle>Chemical papers</jtitle><stitle>Chem. Pap</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>78</volume><issue>5</issue><spage>2987</spage><epage>3002</epage><pages>2987-3002</pages><issn>0366-6352</issn><eissn>1336-9075</eissn><eissn>2585-7290</eissn><abstract>In this report, the Zr-doped nickel oxide nanoparticles were successfully synthesized via the chemical co-precipitation method. The obtained nanostructures crystallized into the face-centred cubic structures, with space group Fm-3 m. The decrease in average crystallite size and the spherical grains with less agglomeration was obtained by Zr-doping. The presence of a peak in the FT-IR spectra at 494 cm
−1
confirmed the formation of the NiO phase. An increase in bandgap energy in doped nanostructures is due to the Burstein–Moss shift. By Zr-doping, the reduction in the saturation magnetization was observed in NiO nanoparticles. The cyclic voltammetry and galvanostatic charge–discharge measurements were used to evaluate the electrochemical properties of the prepared electrodes. For the 6% Zr-doped NiO electrode, a larger specific capacitance (735 Fg
−1
) was obtained, compared to the pure NiO (588 Fg
−1
) at a scan rate of 10 mVs
−1
. In the same electrode, an energy storage density of 15 Whkg
−1
at a power density of 370 Wkg
−1
was obtained. In conclusion, the Zr-doped NiO nanostructures having small crystallite and grain size, with improved electrochemical properties and the superior energy storage density, are potential electrode materials for energy storage devices.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11696-023-03287-0</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-6929-0577</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0366-6352 |
ispartof | Chemical papers, 2024-04, Vol.78 (5), p.2987-3002 |
issn | 0366-6352 1336-9075 2585-7290 |
language | eng |
recordid | cdi_proquest_journals_3004892912 |
source | SpringerLink Journals - AutoHoldings |
subjects | Biochemistry Biotechnology Chemical synthesis Chemistry Chemistry and Materials Science Chemistry/Food Science Crystallites Crystallization Doping Electrochemical analysis Electrode materials Electrodes Electrons Energy storage Grain size Industrial Chemistry/Chemical Engineering Infrared spectroscopy Magnetic saturation Materials Science Medicinal Chemistry Nanoparticles Nanostructure Nickel oxides Original Paper |
title | Zr-doped nickel oxide nanostructures: probing the structure and electrochemical properties |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T19%3A24%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Zr-doped%20nickel%20oxide%20nanostructures:%20probing%20the%20structure%20and%20electrochemical%20properties&rft.jtitle=Chemical%20papers&rft.au=Shah,%20Mujtaba%20Manzoor&rft.date=2024-04-01&rft.volume=78&rft.issue=5&rft.spage=2987&rft.epage=3002&rft.pages=2987-3002&rft.issn=0366-6352&rft.eissn=1336-9075&rft_id=info:doi/10.1007/s11696-023-03287-0&rft_dat=%3Cproquest_cross%3E3004892912%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3004892912&rft_id=info:pmid/&rfr_iscdi=true |