Zr-doped nickel oxide nanostructures: probing the structure and electrochemical properties

In this report, the Zr-doped nickel oxide nanoparticles were successfully synthesized via the chemical co-precipitation method. The obtained nanostructures crystallized into the face-centred cubic structures, with space group Fm-3 m. The decrease in average crystallite size and the spherical grains...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical papers 2024-04, Vol.78 (5), p.2987-3002
Hauptverfasser: Shah, Mujtaba Manzoor, Gupta, Dhirendra Kumar, Ali, Raja Nisar, Husain, Shahid, Rather, Mehraj ud Din
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3002
container_issue 5
container_start_page 2987
container_title Chemical papers
container_volume 78
creator Shah, Mujtaba Manzoor
Gupta, Dhirendra Kumar
Ali, Raja Nisar
Husain, Shahid
Rather, Mehraj ud Din
description In this report, the Zr-doped nickel oxide nanoparticles were successfully synthesized via the chemical co-precipitation method. The obtained nanostructures crystallized into the face-centred cubic structures, with space group Fm-3 m. The decrease in average crystallite size and the spherical grains with less agglomeration was obtained by Zr-doping. The presence of a peak in the FT-IR spectra at 494 cm −1 confirmed the formation of the NiO phase. An increase in bandgap energy in doped nanostructures is due to the Burstein–Moss shift. By Zr-doping, the reduction in the saturation magnetization was observed in NiO nanoparticles. The cyclic voltammetry and galvanostatic charge–discharge measurements were used to evaluate the electrochemical properties of the prepared electrodes. For the 6% Zr-doped NiO electrode, a larger specific capacitance (735 Fg −1 ) was obtained, compared to the pure NiO (588 Fg −1 ) at a scan rate of 10 mVs −1 . In the same electrode, an energy storage density of 15 Whkg −1 at a power density of 370 Wkg −1 was obtained. In conclusion, the Zr-doped NiO nanostructures having small crystallite and grain size, with improved electrochemical properties and the superior energy storage density, are potential electrode materials for energy storage devices.
doi_str_mv 10.1007/s11696-023-03287-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3004892912</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3004892912</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-bc79d0100858b5147b01db2be84d142a6c60f61af2ea4cad089056012ed6c0ec3</originalsourceid><addsrcrecordid>eNp9kEFLxDAQhYMouK7-AU8Bz9FJ0qatN1l0FRa86GUvIU2mu127bU1a0H9v1orevMzA8N4b3kfIJYdrDpDdBM5VoRgIyUCKPGNwRGZcSsUKyNJjMgOpFFMyFafkLIQdQJJACjOyXnvmuh4dbWv7hg3tPmqHtDVtFwY_2mH0GG5p77uybjd02CL9vVPTOooN2sF3dov72prmoOzRDzWGc3JSmSbgxc-ek9eH-5fFI1s9L58WdytmRQYDK21WOIgt8jQvU55kJXBXihLzxPFEGGUVVIqbSqBJrHGQF5Aq4AKdsoBWzsnVlBtfv48YBr3rRt_Gl1rGnnkhCi6iSkwq67sQPFa69_Xe-E_NQR8Y6omhjgz1N8M450ROphDF7Qb9X_Q_ri-OsXXC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3004892912</pqid></control><display><type>article</type><title>Zr-doped nickel oxide nanostructures: probing the structure and electrochemical properties</title><source>SpringerLink Journals - AutoHoldings</source><creator>Shah, Mujtaba Manzoor ; Gupta, Dhirendra Kumar ; Ali, Raja Nisar ; Husain, Shahid ; Rather, Mehraj ud Din</creator><creatorcontrib>Shah, Mujtaba Manzoor ; Gupta, Dhirendra Kumar ; Ali, Raja Nisar ; Husain, Shahid ; Rather, Mehraj ud Din</creatorcontrib><description>In this report, the Zr-doped nickel oxide nanoparticles were successfully synthesized via the chemical co-precipitation method. The obtained nanostructures crystallized into the face-centred cubic structures, with space group Fm-3 m. The decrease in average crystallite size and the spherical grains with less agglomeration was obtained by Zr-doping. The presence of a peak in the FT-IR spectra at 494 cm −1 confirmed the formation of the NiO phase. An increase in bandgap energy in doped nanostructures is due to the Burstein–Moss shift. By Zr-doping, the reduction in the saturation magnetization was observed in NiO nanoparticles. The cyclic voltammetry and galvanostatic charge–discharge measurements were used to evaluate the electrochemical properties of the prepared electrodes. For the 6% Zr-doped NiO electrode, a larger specific capacitance (735 Fg −1 ) was obtained, compared to the pure NiO (588 Fg −1 ) at a scan rate of 10 mVs −1 . In the same electrode, an energy storage density of 15 Whkg −1 at a power density of 370 Wkg −1 was obtained. In conclusion, the Zr-doped NiO nanostructures having small crystallite and grain size, with improved electrochemical properties and the superior energy storage density, are potential electrode materials for energy storage devices.</description><identifier>ISSN: 0366-6352</identifier><identifier>EISSN: 1336-9075</identifier><identifier>EISSN: 2585-7290</identifier><identifier>DOI: 10.1007/s11696-023-03287-0</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Biochemistry ; Biotechnology ; Chemical synthesis ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Crystallites ; Crystallization ; Doping ; Electrochemical analysis ; Electrode materials ; Electrodes ; Electrons ; Energy storage ; Grain size ; Industrial Chemistry/Chemical Engineering ; Infrared spectroscopy ; Magnetic saturation ; Materials Science ; Medicinal Chemistry ; Nanoparticles ; Nanostructure ; Nickel oxides ; Original Paper</subject><ispartof>Chemical papers, 2024-04, Vol.78 (5), p.2987-3002</ispartof><rights>The Author(s), under exclusive licence to the Institute of Chemistry, Slovak Academy of Sciences 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-bc79d0100858b5147b01db2be84d142a6c60f61af2ea4cad089056012ed6c0ec3</cites><orcidid>0000-0001-6929-0577</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11696-023-03287-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11696-023-03287-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Shah, Mujtaba Manzoor</creatorcontrib><creatorcontrib>Gupta, Dhirendra Kumar</creatorcontrib><creatorcontrib>Ali, Raja Nisar</creatorcontrib><creatorcontrib>Husain, Shahid</creatorcontrib><creatorcontrib>Rather, Mehraj ud Din</creatorcontrib><title>Zr-doped nickel oxide nanostructures: probing the structure and electrochemical properties</title><title>Chemical papers</title><addtitle>Chem. Pap</addtitle><description>In this report, the Zr-doped nickel oxide nanoparticles were successfully synthesized via the chemical co-precipitation method. The obtained nanostructures crystallized into the face-centred cubic structures, with space group Fm-3 m. The decrease in average crystallite size and the spherical grains with less agglomeration was obtained by Zr-doping. The presence of a peak in the FT-IR spectra at 494 cm −1 confirmed the formation of the NiO phase. An increase in bandgap energy in doped nanostructures is due to the Burstein–Moss shift. By Zr-doping, the reduction in the saturation magnetization was observed in NiO nanoparticles. The cyclic voltammetry and galvanostatic charge–discharge measurements were used to evaluate the electrochemical properties of the prepared electrodes. For the 6% Zr-doped NiO electrode, a larger specific capacitance (735 Fg −1 ) was obtained, compared to the pure NiO (588 Fg −1 ) at a scan rate of 10 mVs −1 . In the same electrode, an energy storage density of 15 Whkg −1 at a power density of 370 Wkg −1 was obtained. In conclusion, the Zr-doped NiO nanostructures having small crystallite and grain size, with improved electrochemical properties and the superior energy storage density, are potential electrode materials for energy storage devices.</description><subject>Biochemistry</subject><subject>Biotechnology</subject><subject>Chemical synthesis</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Crystallites</subject><subject>Crystallization</subject><subject>Doping</subject><subject>Electrochemical analysis</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Electrons</subject><subject>Energy storage</subject><subject>Grain size</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Infrared spectroscopy</subject><subject>Magnetic saturation</subject><subject>Materials Science</subject><subject>Medicinal Chemistry</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Nickel oxides</subject><subject>Original Paper</subject><issn>0366-6352</issn><issn>1336-9075</issn><issn>2585-7290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLxDAQhYMouK7-AU8Bz9FJ0qatN1l0FRa86GUvIU2mu127bU1a0H9v1orevMzA8N4b3kfIJYdrDpDdBM5VoRgIyUCKPGNwRGZcSsUKyNJjMgOpFFMyFafkLIQdQJJACjOyXnvmuh4dbWv7hg3tPmqHtDVtFwY_2mH0GG5p77uybjd02CL9vVPTOooN2sF3dov72prmoOzRDzWGc3JSmSbgxc-ek9eH-5fFI1s9L58WdytmRQYDK21WOIgt8jQvU55kJXBXihLzxPFEGGUVVIqbSqBJrHGQF5Aq4AKdsoBWzsnVlBtfv48YBr3rRt_Gl1rGnnkhCi6iSkwq67sQPFa69_Xe-E_NQR8Y6omhjgz1N8M450ROphDF7Qb9X_Q_ri-OsXXC</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Shah, Mujtaba Manzoor</creator><creator>Gupta, Dhirendra Kumar</creator><creator>Ali, Raja Nisar</creator><creator>Husain, Shahid</creator><creator>Rather, Mehraj ud Din</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6929-0577</orcidid></search><sort><creationdate>20240401</creationdate><title>Zr-doped nickel oxide nanostructures: probing the structure and electrochemical properties</title><author>Shah, Mujtaba Manzoor ; Gupta, Dhirendra Kumar ; Ali, Raja Nisar ; Husain, Shahid ; Rather, Mehraj ud Din</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-bc79d0100858b5147b01db2be84d142a6c60f61af2ea4cad089056012ed6c0ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biochemistry</topic><topic>Biotechnology</topic><topic>Chemical synthesis</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Crystallites</topic><topic>Crystallization</topic><topic>Doping</topic><topic>Electrochemical analysis</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Electrons</topic><topic>Energy storage</topic><topic>Grain size</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Infrared spectroscopy</topic><topic>Magnetic saturation</topic><topic>Materials Science</topic><topic>Medicinal Chemistry</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Nickel oxides</topic><topic>Original Paper</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shah, Mujtaba Manzoor</creatorcontrib><creatorcontrib>Gupta, Dhirendra Kumar</creatorcontrib><creatorcontrib>Ali, Raja Nisar</creatorcontrib><creatorcontrib>Husain, Shahid</creatorcontrib><creatorcontrib>Rather, Mehraj ud Din</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Chemical papers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shah, Mujtaba Manzoor</au><au>Gupta, Dhirendra Kumar</au><au>Ali, Raja Nisar</au><au>Husain, Shahid</au><au>Rather, Mehraj ud Din</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Zr-doped nickel oxide nanostructures: probing the structure and electrochemical properties</atitle><jtitle>Chemical papers</jtitle><stitle>Chem. Pap</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>78</volume><issue>5</issue><spage>2987</spage><epage>3002</epage><pages>2987-3002</pages><issn>0366-6352</issn><eissn>1336-9075</eissn><eissn>2585-7290</eissn><abstract>In this report, the Zr-doped nickel oxide nanoparticles were successfully synthesized via the chemical co-precipitation method. The obtained nanostructures crystallized into the face-centred cubic structures, with space group Fm-3 m. The decrease in average crystallite size and the spherical grains with less agglomeration was obtained by Zr-doping. The presence of a peak in the FT-IR spectra at 494 cm −1 confirmed the formation of the NiO phase. An increase in bandgap energy in doped nanostructures is due to the Burstein–Moss shift. By Zr-doping, the reduction in the saturation magnetization was observed in NiO nanoparticles. The cyclic voltammetry and galvanostatic charge–discharge measurements were used to evaluate the electrochemical properties of the prepared electrodes. For the 6% Zr-doped NiO electrode, a larger specific capacitance (735 Fg −1 ) was obtained, compared to the pure NiO (588 Fg −1 ) at a scan rate of 10 mVs −1 . In the same electrode, an energy storage density of 15 Whkg −1 at a power density of 370 Wkg −1 was obtained. In conclusion, the Zr-doped NiO nanostructures having small crystallite and grain size, with improved electrochemical properties and the superior energy storage density, are potential electrode materials for energy storage devices.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11696-023-03287-0</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-6929-0577</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0366-6352
ispartof Chemical papers, 2024-04, Vol.78 (5), p.2987-3002
issn 0366-6352
1336-9075
2585-7290
language eng
recordid cdi_proquest_journals_3004892912
source SpringerLink Journals - AutoHoldings
subjects Biochemistry
Biotechnology
Chemical synthesis
Chemistry
Chemistry and Materials Science
Chemistry/Food Science
Crystallites
Crystallization
Doping
Electrochemical analysis
Electrode materials
Electrodes
Electrons
Energy storage
Grain size
Industrial Chemistry/Chemical Engineering
Infrared spectroscopy
Magnetic saturation
Materials Science
Medicinal Chemistry
Nanoparticles
Nanostructure
Nickel oxides
Original Paper
title Zr-doped nickel oxide nanostructures: probing the structure and electrochemical properties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T19%3A24%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Zr-doped%20nickel%20oxide%20nanostructures:%20probing%20the%20structure%20and%20electrochemical%20properties&rft.jtitle=Chemical%20papers&rft.au=Shah,%20Mujtaba%20Manzoor&rft.date=2024-04-01&rft.volume=78&rft.issue=5&rft.spage=2987&rft.epage=3002&rft.pages=2987-3002&rft.issn=0366-6352&rft.eissn=1336-9075&rft_id=info:doi/10.1007/s11696-023-03287-0&rft_dat=%3Cproquest_cross%3E3004892912%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3004892912&rft_id=info:pmid/&rfr_iscdi=true