An extragradient projection method for strongly quasiconvex equilibrium problems with applications

We discuss an extragradient projection method for dealing with equilibrium problems involving bifunctions which are strongly quasiconvex on its second argument. The algorithm combines a proximal step with a subgradient projection step using a generalized subdifferential, which is especially useful f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational & applied mathematics 2024-04, Vol.43 (3), Article 128
Hauptverfasser: Lara, F., Marcavillaca, R. T., Yen, L. H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Computational & applied mathematics
container_volume 43
creator Lara, F.
Marcavillaca, R. T.
Yen, L. H.
description We discuss an extragradient projection method for dealing with equilibrium problems involving bifunctions which are strongly quasiconvex on its second argument. The algorithm combines a proximal step with a subgradient projection step using a generalized subdifferential, which is especially useful for dealing with this class of generalized convex functions, and with a line search. As a consequence, the usual assumption regarding the relationship between the Lipschitz-type parameter and the modulus of strong quasiconvexity is no longer needed for ensuring the convergence of the generated sequence to the solution of the problem. Furthermore, numerical experiments for classes of nonconvex mixed variational inequalities based on fractional programming problems are given in order to show the performance of our proposed method.
doi_str_mv 10.1007/s40314-024-02626-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3004748229</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3004748229</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-2499af240fe3972a15d343efcc475ad3cec59a0f4e5c98eb5216e915e90bbe6c3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wssQ6MH3ktq4qXVIkNrC3HmbSukji1E2j_noQgsWMxms09d0aHkFsG9wwgfQgSBJMR8GkSnkTxGVmwDNIIBPBzsuBcZJFIQFySqxD2ACJlUi5IsWopHnuvt16XFtuedt7t0fTWtbTBfudKWjlPQ-9du61P9DDoYI1rP_FI8TDY2hbeDs2EFTU2gX7Zfkd119XW6KklXJOLStcBb373knw8Pb6vX6LN2_PrerWJDE-hj7jMc11xCRWKPOWaxaWQAitjZBrrUhg0ca6hkhibPMMi5izBnMWYQ1FgYsSS3M294yuHAUOv9m7w7XhSCQCZyozzfEzxOWW8C8FjpTpvG-1PioGaXKrZpRpdqh-XKh4hMUNhDLdb9H_V_1DfEmp53w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3004748229</pqid></control><display><type>article</type><title>An extragradient projection method for strongly quasiconvex equilibrium problems with applications</title><source>Springer Nature - Complete Springer Journals</source><creator>Lara, F. ; Marcavillaca, R. T. ; Yen, L. H.</creator><creatorcontrib>Lara, F. ; Marcavillaca, R. T. ; Yen, L. H.</creatorcontrib><description>We discuss an extragradient projection method for dealing with equilibrium problems involving bifunctions which are strongly quasiconvex on its second argument. The algorithm combines a proximal step with a subgradient projection step using a generalized subdifferential, which is especially useful for dealing with this class of generalized convex functions, and with a line search. As a consequence, the usual assumption regarding the relationship between the Lipschitz-type parameter and the modulus of strong quasiconvexity is no longer needed for ensuring the convergence of the generated sequence to the solution of the problem. Furthermore, numerical experiments for classes of nonconvex mixed variational inequalities based on fractional programming problems are given in order to show the performance of our proposed method.</description><identifier>ISSN: 2238-3603</identifier><identifier>EISSN: 1807-0302</identifier><identifier>DOI: 10.1007/s40314-024-02626-5</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algorithms ; Applications of Mathematics ; Computational Mathematics and Numerical Analysis ; Mathematical Applications in Computer Science ; Mathematical Applications in the Physical Sciences ; Mathematical programming ; Mathematics ; Mathematics and Statistics</subject><ispartof>Computational &amp; applied mathematics, 2024-04, Vol.43 (3), Article 128</ispartof><rights>The Author(s) under exclusive licence to Sociedade Brasileira de Matemática Aplicada e Computacional 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-2499af240fe3972a15d343efcc475ad3cec59a0f4e5c98eb5216e915e90bbe6c3</cites><orcidid>0000-0003-3748-0768 ; 0000-0002-9965-0921 ; 0000-0002-6725-6567</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40314-024-02626-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40314-024-02626-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Lara, F.</creatorcontrib><creatorcontrib>Marcavillaca, R. T.</creatorcontrib><creatorcontrib>Yen, L. H.</creatorcontrib><title>An extragradient projection method for strongly quasiconvex equilibrium problems with applications</title><title>Computational &amp; applied mathematics</title><addtitle>Comp. Appl. Math</addtitle><description>We discuss an extragradient projection method for dealing with equilibrium problems involving bifunctions which are strongly quasiconvex on its second argument. The algorithm combines a proximal step with a subgradient projection step using a generalized subdifferential, which is especially useful for dealing with this class of generalized convex functions, and with a line search. As a consequence, the usual assumption regarding the relationship between the Lipschitz-type parameter and the modulus of strong quasiconvexity is no longer needed for ensuring the convergence of the generated sequence to the solution of the problem. Furthermore, numerical experiments for classes of nonconvex mixed variational inequalities based on fractional programming problems are given in order to show the performance of our proposed method.</description><subject>Algorithms</subject><subject>Applications of Mathematics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Mathematical Applications in Computer Science</subject><subject>Mathematical Applications in the Physical Sciences</subject><subject>Mathematical programming</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>2238-3603</issn><issn>1807-0302</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwA6wssQ6MH3ktq4qXVIkNrC3HmbSukji1E2j_noQgsWMxms09d0aHkFsG9wwgfQgSBJMR8GkSnkTxGVmwDNIIBPBzsuBcZJFIQFySqxD2ACJlUi5IsWopHnuvt16XFtuedt7t0fTWtbTBfudKWjlPQ-9du61P9DDoYI1rP_FI8TDY2hbeDs2EFTU2gX7Zfkd119XW6KklXJOLStcBb373knw8Pb6vX6LN2_PrerWJDE-hj7jMc11xCRWKPOWaxaWQAitjZBrrUhg0ca6hkhibPMMi5izBnMWYQ1FgYsSS3M294yuHAUOv9m7w7XhSCQCZyozzfEzxOWW8C8FjpTpvG-1PioGaXKrZpRpdqh-XKh4hMUNhDLdb9H_V_1DfEmp53w</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Lara, F.</creator><creator>Marcavillaca, R. T.</creator><creator>Yen, L. H.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3748-0768</orcidid><orcidid>https://orcid.org/0000-0002-9965-0921</orcidid><orcidid>https://orcid.org/0000-0002-6725-6567</orcidid></search><sort><creationdate>20240401</creationdate><title>An extragradient projection method for strongly quasiconvex equilibrium problems with applications</title><author>Lara, F. ; Marcavillaca, R. T. ; Yen, L. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-2499af240fe3972a15d343efcc475ad3cec59a0f4e5c98eb5216e915e90bbe6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Applications of Mathematics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Mathematical Applications in Computer Science</topic><topic>Mathematical Applications in the Physical Sciences</topic><topic>Mathematical programming</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lara, F.</creatorcontrib><creatorcontrib>Marcavillaca, R. T.</creatorcontrib><creatorcontrib>Yen, L. H.</creatorcontrib><collection>CrossRef</collection><jtitle>Computational &amp; applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lara, F.</au><au>Marcavillaca, R. T.</au><au>Yen, L. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An extragradient projection method for strongly quasiconvex equilibrium problems with applications</atitle><jtitle>Computational &amp; applied mathematics</jtitle><stitle>Comp. Appl. Math</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>43</volume><issue>3</issue><artnum>128</artnum><issn>2238-3603</issn><eissn>1807-0302</eissn><abstract>We discuss an extragradient projection method for dealing with equilibrium problems involving bifunctions which are strongly quasiconvex on its second argument. The algorithm combines a proximal step with a subgradient projection step using a generalized subdifferential, which is especially useful for dealing with this class of generalized convex functions, and with a line search. As a consequence, the usual assumption regarding the relationship between the Lipschitz-type parameter and the modulus of strong quasiconvexity is no longer needed for ensuring the convergence of the generated sequence to the solution of the problem. Furthermore, numerical experiments for classes of nonconvex mixed variational inequalities based on fractional programming problems are given in order to show the performance of our proposed method.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40314-024-02626-5</doi><orcidid>https://orcid.org/0000-0003-3748-0768</orcidid><orcidid>https://orcid.org/0000-0002-9965-0921</orcidid><orcidid>https://orcid.org/0000-0002-6725-6567</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2238-3603
ispartof Computational & applied mathematics, 2024-04, Vol.43 (3), Article 128
issn 2238-3603
1807-0302
language eng
recordid cdi_proquest_journals_3004748229
source Springer Nature - Complete Springer Journals
subjects Algorithms
Applications of Mathematics
Computational Mathematics and Numerical Analysis
Mathematical Applications in Computer Science
Mathematical Applications in the Physical Sciences
Mathematical programming
Mathematics
Mathematics and Statistics
title An extragradient projection method for strongly quasiconvex equilibrium problems with applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T22%3A19%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20extragradient%20projection%20method%20for%20strongly%20quasiconvex%20equilibrium%20problems%20with%20applications&rft.jtitle=Computational%20&%20applied%20mathematics&rft.au=Lara,%20F.&rft.date=2024-04-01&rft.volume=43&rft.issue=3&rft.artnum=128&rft.issn=2238-3603&rft.eissn=1807-0302&rft_id=info:doi/10.1007/s40314-024-02626-5&rft_dat=%3Cproquest_cross%3E3004748229%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3004748229&rft_id=info:pmid/&rfr_iscdi=true