Accurate Horner methods in real and complex floating-point arithmetic

In this article, we derive accurate Horner methods in real and complex floating-point arithmetic. In particular, we show that these methods are as accurate as if computed in k -fold precision and then rounded into the working precision. When k is two, our methods are comparable or faster than the ex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BIT 2024-06, Vol.64 (2), Article 17
Hauptverfasser: Cameron, Thomas R., Graillat, Stef
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title BIT
container_volume 64
creator Cameron, Thomas R.
Graillat, Stef
description In this article, we derive accurate Horner methods in real and complex floating-point arithmetic. In particular, we show that these methods are as accurate as if computed in k -fold precision and then rounded into the working precision. When k is two, our methods are comparable or faster than the existing compensated Horner routines. When compared to multi-precision software, such as MPFR and MPC, our methods are significantly faster, up to k equal to eight, that is, up to 489 bits in the significand.
doi_str_mv 10.1007/s10543-024-01017-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3004748201</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3004748201</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-387b9dd48253a359a7267d4ac803a6c597106fdfb3cd81502e5d51caf2fcb4ad3</originalsourceid><addsrcrecordid>eNp9kMFLwzAchYMoOKf_gKeA5-gvSdO0xzGmEwZe9ByyJN06uqYmKdP_3mgFb57e5XvvwYfQLYV7CiAfIgVRcAKsIECBSnI6QzMqJCM1ZeIczQCgJLzi4hJdxXgAYHVJ-QytFsaMQSeH1z70LuCjS3tvI257HJzusO4tNv44dO4DN53Xqe13ZPBtn7AObdpnvjXX6KLRXXQ3vzlHb4-r1-WabF6enpeLDTFMQsr_cltbW1RMcM1FrSUrpS20qYDr0ohaUigb22y5sRUVwJywghrdsMZsC235HN1Nu0Pw76OLSR38GPp8qThAIfMy0EyxiTLBxxhco4bQHnX4VBTUty416VJZl_rRpU65xKdSzHC_c-Fv-p_WF9CRbdI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3004748201</pqid></control><display><type>article</type><title>Accurate Horner methods in real and complex floating-point arithmetic</title><source>SpringerLink Journals - AutoHoldings</source><creator>Cameron, Thomas R. ; Graillat, Stef</creator><creatorcontrib>Cameron, Thomas R. ; Graillat, Stef</creatorcontrib><description>In this article, we derive accurate Horner methods in real and complex floating-point arithmetic. In particular, we show that these methods are as accurate as if computed in k -fold precision and then rounded into the working precision. When k is two, our methods are comparable or faster than the existing compensated Horner routines. When compared to multi-precision software, such as MPFR and MPC, our methods are significantly faster, up to k equal to eight, that is, up to 489 bits in the significand.</description><identifier>ISSN: 0006-3835</identifier><identifier>EISSN: 1572-9125</identifier><identifier>DOI: 10.1007/s10543-024-01017-w</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Computational Mathematics and Numerical Analysis ; Floating point arithmetic ; Mathematics ; Mathematics and Statistics ; Numeric Computing</subject><ispartof>BIT, 2024-06, Vol.64 (2), Article 17</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-387b9dd48253a359a7267d4ac803a6c597106fdfb3cd81502e5d51caf2fcb4ad3</cites><orcidid>0000-0002-8708-4336</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10543-024-01017-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10543-024-01017-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Cameron, Thomas R.</creatorcontrib><creatorcontrib>Graillat, Stef</creatorcontrib><title>Accurate Horner methods in real and complex floating-point arithmetic</title><title>BIT</title><addtitle>Bit Numer Math</addtitle><description>In this article, we derive accurate Horner methods in real and complex floating-point arithmetic. In particular, we show that these methods are as accurate as if computed in k -fold precision and then rounded into the working precision. When k is two, our methods are comparable or faster than the existing compensated Horner routines. When compared to multi-precision software, such as MPFR and MPC, our methods are significantly faster, up to k equal to eight, that is, up to 489 bits in the significand.</description><subject>Computational Mathematics and Numerical Analysis</subject><subject>Floating point arithmetic</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numeric Computing</subject><issn>0006-3835</issn><issn>1572-9125</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMFLwzAchYMoOKf_gKeA5-gvSdO0xzGmEwZe9ByyJN06uqYmKdP_3mgFb57e5XvvwYfQLYV7CiAfIgVRcAKsIECBSnI6QzMqJCM1ZeIczQCgJLzi4hJdxXgAYHVJ-QytFsaMQSeH1z70LuCjS3tvI257HJzusO4tNv44dO4DN53Xqe13ZPBtn7AObdpnvjXX6KLRXXQ3vzlHb4-r1-WabF6enpeLDTFMQsr_cltbW1RMcM1FrSUrpS20qYDr0ohaUigb22y5sRUVwJywghrdsMZsC235HN1Nu0Pw76OLSR38GPp8qThAIfMy0EyxiTLBxxhco4bQHnX4VBTUty416VJZl_rRpU65xKdSzHC_c-Fv-p_WF9CRbdI</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Cameron, Thomas R.</creator><creator>Graillat, Stef</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8708-4336</orcidid></search><sort><creationdate>20240601</creationdate><title>Accurate Horner methods in real and complex floating-point arithmetic</title><author>Cameron, Thomas R. ; Graillat, Stef</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-387b9dd48253a359a7267d4ac803a6c597106fdfb3cd81502e5d51caf2fcb4ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Computational Mathematics and Numerical Analysis</topic><topic>Floating point arithmetic</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numeric Computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cameron, Thomas R.</creatorcontrib><creatorcontrib>Graillat, Stef</creatorcontrib><collection>CrossRef</collection><jtitle>BIT</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cameron, Thomas R.</au><au>Graillat, Stef</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accurate Horner methods in real and complex floating-point arithmetic</atitle><jtitle>BIT</jtitle><stitle>Bit Numer Math</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>64</volume><issue>2</issue><artnum>17</artnum><issn>0006-3835</issn><eissn>1572-9125</eissn><abstract>In this article, we derive accurate Horner methods in real and complex floating-point arithmetic. In particular, we show that these methods are as accurate as if computed in k -fold precision and then rounded into the working precision. When k is two, our methods are comparable or faster than the existing compensated Horner routines. When compared to multi-precision software, such as MPFR and MPC, our methods are significantly faster, up to k equal to eight, that is, up to 489 bits in the significand.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10543-024-01017-w</doi><orcidid>https://orcid.org/0000-0002-8708-4336</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0006-3835
ispartof BIT, 2024-06, Vol.64 (2), Article 17
issn 0006-3835
1572-9125
language eng
recordid cdi_proquest_journals_3004748201
source SpringerLink Journals - AutoHoldings
subjects Computational Mathematics and Numerical Analysis
Floating point arithmetic
Mathematics
Mathematics and Statistics
Numeric Computing
title Accurate Horner methods in real and complex floating-point arithmetic
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T03%3A18%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accurate%20Horner%20methods%20in%20real%20and%20complex%20floating-point%20arithmetic&rft.jtitle=BIT&rft.au=Cameron,%20Thomas%20R.&rft.date=2024-06-01&rft.volume=64&rft.issue=2&rft.artnum=17&rft.issn=0006-3835&rft.eissn=1572-9125&rft_id=info:doi/10.1007/s10543-024-01017-w&rft_dat=%3Cproquest_cross%3E3004748201%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3004748201&rft_id=info:pmid/&rfr_iscdi=true