Enhancing detection of malicious profiles and spam tweets with an automated honeypot framework powered by deep learning
Social networks are widely used platforms for sharing various information and content, including text, images, and videos.The main challenge in social networking today is the verification of data credibility and the identification of genuine social media profiles. Cybercriminals take advantage of th...
Gespeichert in:
Veröffentlicht in: | International journal of information security 2024-04, Vol.23 (2), p.1359-1388 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1388 |
---|---|
container_issue | 2 |
container_start_page | 1359 |
container_title | International journal of information security |
container_volume | 23 |
creator | El Mendili, Fatna Fattah, Mohammed Berros, Nisrine Filaly, Youness El Bouzekri El Idrissi, Younès |
description | Social networks are widely used platforms for sharing various information and content, including text, images, and videos.The main challenge in social networking today is the verification of data credibility and the identification of genuine social media profiles. Cybercriminals take advantage of this by utilizing fake profiles to disseminate false information. However, current research mainly concentrates on spam filtering and analyzing malicious behavior separately, disregarding the interrelated nature of these issues. We propose a more desirable global, hybrid solution that encompasses both malicious profile detection and spam detection to mitigate the spread of spam effectively. This paper offers a deep learning-based method for detecting malicious profiles and spam tweets. For the profiles to interact with them as legitimate profiles, we first provide the detection of fake profiles using an automated honeypot. Next, we detect those who make interactions as malicious profiles, and finally, we collect their shared content to find spam tweets using a convolution neural network algorithm. We suggest using collaborative filtering and content filtering algorithms from recommender systems to define accounts similar to harmful profiles and spam similar to spam material picked up by convolution neural networks. We get a highly compelling and intriguing outcome with higher accuracy (99.23%) and lesser loss than typical learning algorithms. |
doi_str_mv | 10.1007/s10207-023-00796-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3003355015</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3003355015</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-c94ec55051d20cfae5dbfad9eb65518cf9ffaea40cc9b022670d980dc9a44b3e3</originalsourceid><addsrcrecordid>eNp9UMlOwzAQjRBIlMIPcLLEOTB24qQ-oqosUiUucLYcZ9ymJHawXUX9ewxFcOM021s0L8uuKdxSgPouUGBQ58CKPI2iyuuTbEYrynPOajj97St2nl2EsANgFASdZdPKbpXVnd2QFiPq2DlLnCGD6jvduX0go3em6zEQZVsSRjWQOCHGQKYubtOSqH10g4rYkq2zeBhdJMarASfn38noJvTp1BySPo6kR-VtcrvMzozqA1791Hn29rB6XT7l65fH5-X9OtcFFTHXokTNOXDaMtBGIW8bo1qBTcU5XWgjTFqqErQWDTBW1dCKBbRaqLJsCizm2c1RN73xsccQ5c7tvU2WsgAoiqRNeUKxI0p7F4JHI0ffDcofJAX5FbA8BixTwPI7YFknUnEkhQS2G_R_0v-wPgF3kIFZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3003355015</pqid></control><display><type>article</type><title>Enhancing detection of malicious profiles and spam tweets with an automated honeypot framework powered by deep learning</title><source>SpringerNature Journals</source><creator>El Mendili, Fatna ; Fattah, Mohammed ; Berros, Nisrine ; Filaly, Youness ; El Bouzekri El Idrissi, Younès</creator><creatorcontrib>El Mendili, Fatna ; Fattah, Mohammed ; Berros, Nisrine ; Filaly, Youness ; El Bouzekri El Idrissi, Younès</creatorcontrib><description>Social networks are widely used platforms for sharing various information and content, including text, images, and videos.The main challenge in social networking today is the verification of data credibility and the identification of genuine social media profiles. Cybercriminals take advantage of this by utilizing fake profiles to disseminate false information. However, current research mainly concentrates on spam filtering and analyzing malicious behavior separately, disregarding the interrelated nature of these issues. We propose a more desirable global, hybrid solution that encompasses both malicious profile detection and spam detection to mitigate the spread of spam effectively. This paper offers a deep learning-based method for detecting malicious profiles and spam tweets. For the profiles to interact with them as legitimate profiles, we first provide the detection of fake profiles using an automated honeypot. Next, we detect those who make interactions as malicious profiles, and finally, we collect their shared content to find spam tweets using a convolution neural network algorithm. We suggest using collaborative filtering and content filtering algorithms from recommender systems to define accounts similar to harmful profiles and spam similar to spam material picked up by convolution neural networks. We get a highly compelling and intriguing outcome with higher accuracy (99.23%) and lesser loss than typical learning algorithms.</description><identifier>ISSN: 1615-5262</identifier><identifier>EISSN: 1615-5270</identifier><identifier>DOI: 10.1007/s10207-023-00796-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Artificial neural networks ; Automation ; Coding and Information Theory ; Communications Engineering ; Computer Communication Networks ; Computer Science ; Cryptology ; Deep learning ; Filtration ; Machine learning ; Management of Computing and Information Systems ; Networks ; Neural networks ; Operating Systems ; Recommender systems ; Regular Contribution ; Social networks</subject><ispartof>International journal of information security, 2024-04, Vol.23 (2), p.1359-1388</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-c94ec55051d20cfae5dbfad9eb65518cf9ffaea40cc9b022670d980dc9a44b3e3</citedby><cites>FETCH-LOGICAL-c319t-c94ec55051d20cfae5dbfad9eb65518cf9ffaea40cc9b022670d980dc9a44b3e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10207-023-00796-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10207-023-00796-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>El Mendili, Fatna</creatorcontrib><creatorcontrib>Fattah, Mohammed</creatorcontrib><creatorcontrib>Berros, Nisrine</creatorcontrib><creatorcontrib>Filaly, Youness</creatorcontrib><creatorcontrib>El Bouzekri El Idrissi, Younès</creatorcontrib><title>Enhancing detection of malicious profiles and spam tweets with an automated honeypot framework powered by deep learning</title><title>International journal of information security</title><addtitle>Int. J. Inf. Secur</addtitle><description>Social networks are widely used platforms for sharing various information and content, including text, images, and videos.The main challenge in social networking today is the verification of data credibility and the identification of genuine social media profiles. Cybercriminals take advantage of this by utilizing fake profiles to disseminate false information. However, current research mainly concentrates on spam filtering and analyzing malicious behavior separately, disregarding the interrelated nature of these issues. We propose a more desirable global, hybrid solution that encompasses both malicious profile detection and spam detection to mitigate the spread of spam effectively. This paper offers a deep learning-based method for detecting malicious profiles and spam tweets. For the profiles to interact with them as legitimate profiles, we first provide the detection of fake profiles using an automated honeypot. Next, we detect those who make interactions as malicious profiles, and finally, we collect their shared content to find spam tweets using a convolution neural network algorithm. We suggest using collaborative filtering and content filtering algorithms from recommender systems to define accounts similar to harmful profiles and spam similar to spam material picked up by convolution neural networks. We get a highly compelling and intriguing outcome with higher accuracy (99.23%) and lesser loss than typical learning algorithms.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Automation</subject><subject>Coding and Information Theory</subject><subject>Communications Engineering</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Cryptology</subject><subject>Deep learning</subject><subject>Filtration</subject><subject>Machine learning</subject><subject>Management of Computing and Information Systems</subject><subject>Networks</subject><subject>Neural networks</subject><subject>Operating Systems</subject><subject>Recommender systems</subject><subject>Regular Contribution</subject><subject>Social networks</subject><issn>1615-5262</issn><issn>1615-5270</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9UMlOwzAQjRBIlMIPcLLEOTB24qQ-oqosUiUucLYcZ9ymJHawXUX9ewxFcOM021s0L8uuKdxSgPouUGBQ58CKPI2iyuuTbEYrynPOajj97St2nl2EsANgFASdZdPKbpXVnd2QFiPq2DlLnCGD6jvduX0go3em6zEQZVsSRjWQOCHGQKYubtOSqH10g4rYkq2zeBhdJMarASfn38noJvTp1BySPo6kR-VtcrvMzozqA1791Hn29rB6XT7l65fH5-X9OtcFFTHXokTNOXDaMtBGIW8bo1qBTcU5XWgjTFqqErQWDTBW1dCKBbRaqLJsCizm2c1RN73xsccQ5c7tvU2WsgAoiqRNeUKxI0p7F4JHI0ffDcofJAX5FbA8BixTwPI7YFknUnEkhQS2G_R_0v-wPgF3kIFZ</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>El Mendili, Fatna</creator><creator>Fattah, Mohammed</creator><creator>Berros, Nisrine</creator><creator>Filaly, Youness</creator><creator>El Bouzekri El Idrissi, Younès</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>K7.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20240401</creationdate><title>Enhancing detection of malicious profiles and spam tweets with an automated honeypot framework powered by deep learning</title><author>El Mendili, Fatna ; Fattah, Mohammed ; Berros, Nisrine ; Filaly, Youness ; El Bouzekri El Idrissi, Younès</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-c94ec55051d20cfae5dbfad9eb65518cf9ffaea40cc9b022670d980dc9a44b3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Automation</topic><topic>Coding and Information Theory</topic><topic>Communications Engineering</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Cryptology</topic><topic>Deep learning</topic><topic>Filtration</topic><topic>Machine learning</topic><topic>Management of Computing and Information Systems</topic><topic>Networks</topic><topic>Neural networks</topic><topic>Operating Systems</topic><topic>Recommender systems</topic><topic>Regular Contribution</topic><topic>Social networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>El Mendili, Fatna</creatorcontrib><creatorcontrib>Fattah, Mohammed</creatorcontrib><creatorcontrib>Berros, Nisrine</creatorcontrib><creatorcontrib>Filaly, Youness</creatorcontrib><creatorcontrib>El Bouzekri El Idrissi, Younès</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Criminal Justice (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of information security</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>El Mendili, Fatna</au><au>Fattah, Mohammed</au><au>Berros, Nisrine</au><au>Filaly, Youness</au><au>El Bouzekri El Idrissi, Younès</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing detection of malicious profiles and spam tweets with an automated honeypot framework powered by deep learning</atitle><jtitle>International journal of information security</jtitle><stitle>Int. J. Inf. Secur</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>23</volume><issue>2</issue><spage>1359</spage><epage>1388</epage><pages>1359-1388</pages><issn>1615-5262</issn><eissn>1615-5270</eissn><abstract>Social networks are widely used platforms for sharing various information and content, including text, images, and videos.The main challenge in social networking today is the verification of data credibility and the identification of genuine social media profiles. Cybercriminals take advantage of this by utilizing fake profiles to disseminate false information. However, current research mainly concentrates on spam filtering and analyzing malicious behavior separately, disregarding the interrelated nature of these issues. We propose a more desirable global, hybrid solution that encompasses both malicious profile detection and spam detection to mitigate the spread of spam effectively. This paper offers a deep learning-based method for detecting malicious profiles and spam tweets. For the profiles to interact with them as legitimate profiles, we first provide the detection of fake profiles using an automated honeypot. Next, we detect those who make interactions as malicious profiles, and finally, we collect their shared content to find spam tweets using a convolution neural network algorithm. We suggest using collaborative filtering and content filtering algorithms from recommender systems to define accounts similar to harmful profiles and spam similar to spam material picked up by convolution neural networks. We get a highly compelling and intriguing outcome with higher accuracy (99.23%) and lesser loss than typical learning algorithms.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10207-023-00796-7</doi><tpages>30</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1615-5262 |
ispartof | International journal of information security, 2024-04, Vol.23 (2), p.1359-1388 |
issn | 1615-5262 1615-5270 |
language | eng |
recordid | cdi_proquest_journals_3003355015 |
source | SpringerNature Journals |
subjects | Algorithms Artificial neural networks Automation Coding and Information Theory Communications Engineering Computer Communication Networks Computer Science Cryptology Deep learning Filtration Machine learning Management of Computing and Information Systems Networks Neural networks Operating Systems Recommender systems Regular Contribution Social networks |
title | Enhancing detection of malicious profiles and spam tweets with an automated honeypot framework powered by deep learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T15%3A50%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20detection%20of%20malicious%20profiles%20and%20spam%20tweets%20with%20an%20automated%20honeypot%20framework%20powered%20by%20deep%20learning&rft.jtitle=International%20journal%20of%20information%20security&rft.au=El%20Mendili,%20Fatna&rft.date=2024-04-01&rft.volume=23&rft.issue=2&rft.spage=1359&rft.epage=1388&rft.pages=1359-1388&rft.issn=1615-5262&rft.eissn=1615-5270&rft_id=info:doi/10.1007/s10207-023-00796-7&rft_dat=%3Cproquest_cross%3E3003355015%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3003355015&rft_id=info:pmid/&rfr_iscdi=true |