Adding plant metabolites improve plant phosphorus uptake by altering the rhizosphere bacterial community structure
Background and aims Plant-derived metabolites play a crucial role in mediating plant–microbe interactions affecting plant development, health and ability to withstand biotic and abiotic stresses. However, how the key plant metabolites, e.g., flavonoids and fatty acids secreted by roots, regulate soi...
Gespeichert in:
Veröffentlicht in: | Plant and soil 2024-04, Vol.497 (1-2), p.503-522 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 522 |
---|---|
container_issue | 1-2 |
container_start_page | 503 |
container_title | Plant and soil |
container_volume | 497 |
creator | Wang, Siji Duan, Shilong George, Timothy S. Feng, Gu Zhang, Lin |
description | Background and aims
Plant-derived metabolites play a crucial role in mediating plant–microbe interactions affecting plant development, health and ability to withstand biotic and abiotic stresses. However, how the key plant metabolites, e.g., flavonoids and fatty acids secreted by roots, regulate soil microbial communities to promote plant phosphorus (P) nutrition, growth and development remains unclear.
Methods
We determined whether the addition of different concentrations (0, 50 or 500 μmol kg
−1
) of myristic acid (fatty acid), quercetin, naringenin or luteolin (flavonoids) to the soil to improved soil organic P utilization efficiency and enhanced plant growth by changing microbial community.
Results
Flavonoids could directly regulate rhizosphere bacterial community structure, with a significant increase in the relative abundance of Micrococcaceae and Nocardioidaceae by the addition of 50 μmol kg
−1
of naringenin, luteolin, 500 μmol kg
−1
of quercetin, naringenin or luteolin. The addition of myristic acid had weaker impact on bacterial community structure. The altered bacterial community structure lead to the increased alkaline phosphatase activity in the rhizosphere to promote the mineralization of organic P, which could facilitate plant growth and P uptake to different extents.
Conclusion
Our results indicate that the addition of flavonoids enhanced organic P mineralization by selecting individuals which secreted more phosphatases. These findings can provide guidance for effective manipulation of composition of plant-microbial communities to increase plant P nutrition and/or efficiency of use of P fertilizers. |
doi_str_mv | 10.1007/s11104-023-06409-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3003345532</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3003345532</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-f5dbaf5c05e39bb276921db9fcc0ec43b214acf10d7d36b8f3fcfd79817a33f83</originalsourceid><addsrcrecordid>eNp9UEtLxDAQDqLg-vgDngKeq5NO026Py-ILFrwoeAtJmrhd-zJJhfXXm9oFbx6GYfgew_cRcsXghgEUt54xBlkCKSaQZ1Am_IgsGC8w4YD5MVkAYJpAUb6dkjPvdzDdLF8Qt6qqununQyO7QFsTpOqbOhhP63Zw_Zc5IMO293Hc6Ok4BPlhqNpT2QTjJnXYGuq29ffEMS5iUk-IbKju23bs6rCnPrhRh9GZC3JiZePN5WGfk9f7u5f1Y7J5fnharzaJRlaGxPJKScs1cIOlUmmRlymrVGm1BqMzVCnLpLYMqqLCXC0tWm2rolyyQiLaJZ6T69k35vgcjQ9i14-uiy8FxviYcY5pZKUzS7vee2esGFzdSrcXDMTUrZi7FbFb8dut4FGEs8gPU37j_qz_Uf0AuGyAZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3003345532</pqid></control><display><type>article</type><title>Adding plant metabolites improve plant phosphorus uptake by altering the rhizosphere bacterial community structure</title><source>SpringerLink Journals - AutoHoldings</source><creator>Wang, Siji ; Duan, Shilong ; George, Timothy S. ; Feng, Gu ; Zhang, Lin</creator><creatorcontrib>Wang, Siji ; Duan, Shilong ; George, Timothy S. ; Feng, Gu ; Zhang, Lin</creatorcontrib><description>Background and aims
Plant-derived metabolites play a crucial role in mediating plant–microbe interactions affecting plant development, health and ability to withstand biotic and abiotic stresses. However, how the key plant metabolites, e.g., flavonoids and fatty acids secreted by roots, regulate soil microbial communities to promote plant phosphorus (P) nutrition, growth and development remains unclear.
Methods
We determined whether the addition of different concentrations (0, 50 or 500 μmol kg
−1
) of myristic acid (fatty acid), quercetin, naringenin or luteolin (flavonoids) to the soil to improved soil organic P utilization efficiency and enhanced plant growth by changing microbial community.
Results
Flavonoids could directly regulate rhizosphere bacterial community structure, with a significant increase in the relative abundance of Micrococcaceae and Nocardioidaceae by the addition of 50 μmol kg
−1
of naringenin, luteolin, 500 μmol kg
−1
of quercetin, naringenin or luteolin. The addition of myristic acid had weaker impact on bacterial community structure. The altered bacterial community structure lead to the increased alkaline phosphatase activity in the rhizosphere to promote the mineralization of organic P, which could facilitate plant growth and P uptake to different extents.
Conclusion
Our results indicate that the addition of flavonoids enhanced organic P mineralization by selecting individuals which secreted more phosphatases. These findings can provide guidance for effective manipulation of composition of plant-microbial communities to increase plant P nutrition and/or efficiency of use of P fertilizers.</description><identifier>ISSN: 0032-079X</identifier><identifier>EISSN: 1573-5036</identifier><identifier>DOI: 10.1007/s11104-023-06409-5</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Agriculture ; Alkaline phosphatase ; Bacteria ; Biomedical and Life Sciences ; Community structure ; Ecology ; Fatty acids ; Flavonoids ; Life Sciences ; Metabolites ; Microbial activity ; Microbiomes ; Microorganisms ; Mineralization ; Naringenin ; Organic soils ; Phosphorus ; Plant growth ; Plant nutrition ; Plant Physiology ; Plant Sciences ; Plants ; Quercetin ; Relative abundance ; Research Article ; Rhizosphere ; Soil improvement ; Soil Science & Conservation ; Soils</subject><ispartof>Plant and soil, 2024-04, Vol.497 (1-2), p.503-522</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-f5dbaf5c05e39bb276921db9fcc0ec43b214acf10d7d36b8f3fcfd79817a33f83</citedby><cites>FETCH-LOGICAL-c319t-f5dbaf5c05e39bb276921db9fcc0ec43b214acf10d7d36b8f3fcfd79817a33f83</cites><orcidid>0000-0002-1663-5620</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11104-023-06409-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11104-023-06409-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Wang, Siji</creatorcontrib><creatorcontrib>Duan, Shilong</creatorcontrib><creatorcontrib>George, Timothy S.</creatorcontrib><creatorcontrib>Feng, Gu</creatorcontrib><creatorcontrib>Zhang, Lin</creatorcontrib><title>Adding plant metabolites improve plant phosphorus uptake by altering the rhizosphere bacterial community structure</title><title>Plant and soil</title><addtitle>Plant Soil</addtitle><description>Background and aims
Plant-derived metabolites play a crucial role in mediating plant–microbe interactions affecting plant development, health and ability to withstand biotic and abiotic stresses. However, how the key plant metabolites, e.g., flavonoids and fatty acids secreted by roots, regulate soil microbial communities to promote plant phosphorus (P) nutrition, growth and development remains unclear.
Methods
We determined whether the addition of different concentrations (0, 50 or 500 μmol kg
−1
) of myristic acid (fatty acid), quercetin, naringenin or luteolin (flavonoids) to the soil to improved soil organic P utilization efficiency and enhanced plant growth by changing microbial community.
Results
Flavonoids could directly regulate rhizosphere bacterial community structure, with a significant increase in the relative abundance of Micrococcaceae and Nocardioidaceae by the addition of 50 μmol kg
−1
of naringenin, luteolin, 500 μmol kg
−1
of quercetin, naringenin or luteolin. The addition of myristic acid had weaker impact on bacterial community structure. The altered bacterial community structure lead to the increased alkaline phosphatase activity in the rhizosphere to promote the mineralization of organic P, which could facilitate plant growth and P uptake to different extents.
Conclusion
Our results indicate that the addition of flavonoids enhanced organic P mineralization by selecting individuals which secreted more phosphatases. These findings can provide guidance for effective manipulation of composition of plant-microbial communities to increase plant P nutrition and/or efficiency of use of P fertilizers.</description><subject>Agriculture</subject><subject>Alkaline phosphatase</subject><subject>Bacteria</subject><subject>Biomedical and Life Sciences</subject><subject>Community structure</subject><subject>Ecology</subject><subject>Fatty acids</subject><subject>Flavonoids</subject><subject>Life Sciences</subject><subject>Metabolites</subject><subject>Microbial activity</subject><subject>Microbiomes</subject><subject>Microorganisms</subject><subject>Mineralization</subject><subject>Naringenin</subject><subject>Organic soils</subject><subject>Phosphorus</subject><subject>Plant growth</subject><subject>Plant nutrition</subject><subject>Plant Physiology</subject><subject>Plant Sciences</subject><subject>Plants</subject><subject>Quercetin</subject><subject>Relative abundance</subject><subject>Research Article</subject><subject>Rhizosphere</subject><subject>Soil improvement</subject><subject>Soil Science & Conservation</subject><subject>Soils</subject><issn>0032-079X</issn><issn>1573-5036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9UEtLxDAQDqLg-vgDngKeq5NO026Py-ILFrwoeAtJmrhd-zJJhfXXm9oFbx6GYfgew_cRcsXghgEUt54xBlkCKSaQZ1Am_IgsGC8w4YD5MVkAYJpAUb6dkjPvdzDdLF8Qt6qqununQyO7QFsTpOqbOhhP63Zw_Zc5IMO293Hc6Ok4BPlhqNpT2QTjJnXYGuq29ffEMS5iUk-IbKju23bs6rCnPrhRh9GZC3JiZePN5WGfk9f7u5f1Y7J5fnharzaJRlaGxPJKScs1cIOlUmmRlymrVGm1BqMzVCnLpLYMqqLCXC0tWm2rolyyQiLaJZ6T69k35vgcjQ9i14-uiy8FxviYcY5pZKUzS7vee2esGFzdSrcXDMTUrZi7FbFb8dut4FGEs8gPU37j_qz_Uf0AuGyAZQ</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Wang, Siji</creator><creator>Duan, Shilong</creator><creator>George, Timothy S.</creator><creator>Feng, Gu</creator><creator>Zhang, Lin</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-1663-5620</orcidid></search><sort><creationdate>20240401</creationdate><title>Adding plant metabolites improve plant phosphorus uptake by altering the rhizosphere bacterial community structure</title><author>Wang, Siji ; Duan, Shilong ; George, Timothy S. ; Feng, Gu ; Zhang, Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-f5dbaf5c05e39bb276921db9fcc0ec43b214acf10d7d36b8f3fcfd79817a33f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Agriculture</topic><topic>Alkaline phosphatase</topic><topic>Bacteria</topic><topic>Biomedical and Life Sciences</topic><topic>Community structure</topic><topic>Ecology</topic><topic>Fatty acids</topic><topic>Flavonoids</topic><topic>Life Sciences</topic><topic>Metabolites</topic><topic>Microbial activity</topic><topic>Microbiomes</topic><topic>Microorganisms</topic><topic>Mineralization</topic><topic>Naringenin</topic><topic>Organic soils</topic><topic>Phosphorus</topic><topic>Plant growth</topic><topic>Plant nutrition</topic><topic>Plant Physiology</topic><topic>Plant Sciences</topic><topic>Plants</topic><topic>Quercetin</topic><topic>Relative abundance</topic><topic>Research Article</topic><topic>Rhizosphere</topic><topic>Soil improvement</topic><topic>Soil Science & Conservation</topic><topic>Soils</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Siji</creatorcontrib><creatorcontrib>Duan, Shilong</creatorcontrib><creatorcontrib>George, Timothy S.</creatorcontrib><creatorcontrib>Feng, Gu</creatorcontrib><creatorcontrib>Zhang, Lin</creatorcontrib><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Plant and soil</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Siji</au><au>Duan, Shilong</au><au>George, Timothy S.</au><au>Feng, Gu</au><au>Zhang, Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adding plant metabolites improve plant phosphorus uptake by altering the rhizosphere bacterial community structure</atitle><jtitle>Plant and soil</jtitle><stitle>Plant Soil</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>497</volume><issue>1-2</issue><spage>503</spage><epage>522</epage><pages>503-522</pages><issn>0032-079X</issn><eissn>1573-5036</eissn><abstract>Background and aims
Plant-derived metabolites play a crucial role in mediating plant–microbe interactions affecting plant development, health and ability to withstand biotic and abiotic stresses. However, how the key plant metabolites, e.g., flavonoids and fatty acids secreted by roots, regulate soil microbial communities to promote plant phosphorus (P) nutrition, growth and development remains unclear.
Methods
We determined whether the addition of different concentrations (0, 50 or 500 μmol kg
−1
) of myristic acid (fatty acid), quercetin, naringenin or luteolin (flavonoids) to the soil to improved soil organic P utilization efficiency and enhanced plant growth by changing microbial community.
Results
Flavonoids could directly regulate rhizosphere bacterial community structure, with a significant increase in the relative abundance of Micrococcaceae and Nocardioidaceae by the addition of 50 μmol kg
−1
of naringenin, luteolin, 500 μmol kg
−1
of quercetin, naringenin or luteolin. The addition of myristic acid had weaker impact on bacterial community structure. The altered bacterial community structure lead to the increased alkaline phosphatase activity in the rhizosphere to promote the mineralization of organic P, which could facilitate plant growth and P uptake to different extents.
Conclusion
Our results indicate that the addition of flavonoids enhanced organic P mineralization by selecting individuals which secreted more phosphatases. These findings can provide guidance for effective manipulation of composition of plant-microbial communities to increase plant P nutrition and/or efficiency of use of P fertilizers.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11104-023-06409-5</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-1663-5620</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-079X |
ispartof | Plant and soil, 2024-04, Vol.497 (1-2), p.503-522 |
issn | 0032-079X 1573-5036 |
language | eng |
recordid | cdi_proquest_journals_3003345532 |
source | SpringerLink Journals - AutoHoldings |
subjects | Agriculture Alkaline phosphatase Bacteria Biomedical and Life Sciences Community structure Ecology Fatty acids Flavonoids Life Sciences Metabolites Microbial activity Microbiomes Microorganisms Mineralization Naringenin Organic soils Phosphorus Plant growth Plant nutrition Plant Physiology Plant Sciences Plants Quercetin Relative abundance Research Article Rhizosphere Soil improvement Soil Science & Conservation Soils |
title | Adding plant metabolites improve plant phosphorus uptake by altering the rhizosphere bacterial community structure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T05%3A56%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adding%20plant%20metabolites%20improve%20plant%20phosphorus%20uptake%20by%20altering%20the%20rhizosphere%20bacterial%20community%20structure&rft.jtitle=Plant%20and%20soil&rft.au=Wang,%20Siji&rft.date=2024-04-01&rft.volume=497&rft.issue=1-2&rft.spage=503&rft.epage=522&rft.pages=503-522&rft.issn=0032-079X&rft.eissn=1573-5036&rft_id=info:doi/10.1007/s11104-023-06409-5&rft_dat=%3Cproquest_cross%3E3003345532%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3003345532&rft_id=info:pmid/&rfr_iscdi=true |