Adding plant metabolites improve plant phosphorus uptake by altering the rhizosphere bacterial community structure

Background and aims Plant-derived metabolites play a crucial role in mediating plant–microbe interactions affecting plant development, health and ability to withstand biotic and abiotic stresses. However, how the key plant metabolites, e.g., flavonoids and fatty acids secreted by roots, regulate soi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant and soil 2024-04, Vol.497 (1-2), p.503-522
Hauptverfasser: Wang, Siji, Duan, Shilong, George, Timothy S., Feng, Gu, Zhang, Lin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 522
container_issue 1-2
container_start_page 503
container_title Plant and soil
container_volume 497
creator Wang, Siji
Duan, Shilong
George, Timothy S.
Feng, Gu
Zhang, Lin
description Background and aims Plant-derived metabolites play a crucial role in mediating plant–microbe interactions affecting plant development, health and ability to withstand biotic and abiotic stresses. However, how the key plant metabolites, e.g., flavonoids and fatty acids secreted by roots, regulate soil microbial communities to promote plant phosphorus (P) nutrition, growth and development remains unclear. Methods We determined whether the addition of different concentrations (0, 50 or 500 μmol kg −1 ) of myristic acid (fatty acid), quercetin, naringenin or luteolin (flavonoids) to the soil to improved soil organic P utilization efficiency and enhanced plant growth by changing microbial community. Results Flavonoids could directly regulate rhizosphere bacterial community structure, with a significant increase in the relative abundance of Micrococcaceae and Nocardioidaceae by the addition of 50 μmol kg −1 of naringenin, luteolin, 500 μmol kg −1 of quercetin, naringenin or luteolin. The addition of myristic acid had weaker impact on bacterial community structure. The altered bacterial community structure lead to the increased alkaline phosphatase activity in the rhizosphere to promote the mineralization of organic P, which could facilitate plant growth and P uptake to different extents. Conclusion Our results indicate that the addition of flavonoids enhanced organic P mineralization by selecting individuals which secreted more phosphatases. These findings can provide guidance for effective manipulation of composition of plant-microbial communities to increase plant P nutrition and/or efficiency of use of P fertilizers.
doi_str_mv 10.1007/s11104-023-06409-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3003345532</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3003345532</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-f5dbaf5c05e39bb276921db9fcc0ec43b214acf10d7d36b8f3fcfd79817a33f83</originalsourceid><addsrcrecordid>eNp9UEtLxDAQDqLg-vgDngKeq5NO026Py-ILFrwoeAtJmrhd-zJJhfXXm9oFbx6GYfgew_cRcsXghgEUt54xBlkCKSaQZ1Am_IgsGC8w4YD5MVkAYJpAUb6dkjPvdzDdLF8Qt6qqununQyO7QFsTpOqbOhhP63Zw_Zc5IMO293Hc6Ok4BPlhqNpT2QTjJnXYGuq29ffEMS5iUk-IbKju23bs6rCnPrhRh9GZC3JiZePN5WGfk9f7u5f1Y7J5fnharzaJRlaGxPJKScs1cIOlUmmRlymrVGm1BqMzVCnLpLYMqqLCXC0tWm2rolyyQiLaJZ6T69k35vgcjQ9i14-uiy8FxviYcY5pZKUzS7vee2esGFzdSrcXDMTUrZi7FbFb8dut4FGEs8gPU37j_qz_Uf0AuGyAZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3003345532</pqid></control><display><type>article</type><title>Adding plant metabolites improve plant phosphorus uptake by altering the rhizosphere bacterial community structure</title><source>SpringerLink Journals - AutoHoldings</source><creator>Wang, Siji ; Duan, Shilong ; George, Timothy S. ; Feng, Gu ; Zhang, Lin</creator><creatorcontrib>Wang, Siji ; Duan, Shilong ; George, Timothy S. ; Feng, Gu ; Zhang, Lin</creatorcontrib><description>Background and aims Plant-derived metabolites play a crucial role in mediating plant–microbe interactions affecting plant development, health and ability to withstand biotic and abiotic stresses. However, how the key plant metabolites, e.g., flavonoids and fatty acids secreted by roots, regulate soil microbial communities to promote plant phosphorus (P) nutrition, growth and development remains unclear. Methods We determined whether the addition of different concentrations (0, 50 or 500 μmol kg −1 ) of myristic acid (fatty acid), quercetin, naringenin or luteolin (flavonoids) to the soil to improved soil organic P utilization efficiency and enhanced plant growth by changing microbial community. Results Flavonoids could directly regulate rhizosphere bacterial community structure, with a significant increase in the relative abundance of Micrococcaceae and Nocardioidaceae by the addition of 50 μmol kg −1 of naringenin, luteolin, 500 μmol kg −1 of quercetin, naringenin or luteolin. The addition of myristic acid had weaker impact on bacterial community structure. The altered bacterial community structure lead to the increased alkaline phosphatase activity in the rhizosphere to promote the mineralization of organic P, which could facilitate plant growth and P uptake to different extents. Conclusion Our results indicate that the addition of flavonoids enhanced organic P mineralization by selecting individuals which secreted more phosphatases. These findings can provide guidance for effective manipulation of composition of plant-microbial communities to increase plant P nutrition and/or efficiency of use of P fertilizers.</description><identifier>ISSN: 0032-079X</identifier><identifier>EISSN: 1573-5036</identifier><identifier>DOI: 10.1007/s11104-023-06409-5</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Agriculture ; Alkaline phosphatase ; Bacteria ; Biomedical and Life Sciences ; Community structure ; Ecology ; Fatty acids ; Flavonoids ; Life Sciences ; Metabolites ; Microbial activity ; Microbiomes ; Microorganisms ; Mineralization ; Naringenin ; Organic soils ; Phosphorus ; Plant growth ; Plant nutrition ; Plant Physiology ; Plant Sciences ; Plants ; Quercetin ; Relative abundance ; Research Article ; Rhizosphere ; Soil improvement ; Soil Science &amp; Conservation ; Soils</subject><ispartof>Plant and soil, 2024-04, Vol.497 (1-2), p.503-522</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-f5dbaf5c05e39bb276921db9fcc0ec43b214acf10d7d36b8f3fcfd79817a33f83</citedby><cites>FETCH-LOGICAL-c319t-f5dbaf5c05e39bb276921db9fcc0ec43b214acf10d7d36b8f3fcfd79817a33f83</cites><orcidid>0000-0002-1663-5620</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11104-023-06409-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11104-023-06409-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Wang, Siji</creatorcontrib><creatorcontrib>Duan, Shilong</creatorcontrib><creatorcontrib>George, Timothy S.</creatorcontrib><creatorcontrib>Feng, Gu</creatorcontrib><creatorcontrib>Zhang, Lin</creatorcontrib><title>Adding plant metabolites improve plant phosphorus uptake by altering the rhizosphere bacterial community structure</title><title>Plant and soil</title><addtitle>Plant Soil</addtitle><description>Background and aims Plant-derived metabolites play a crucial role in mediating plant–microbe interactions affecting plant development, health and ability to withstand biotic and abiotic stresses. However, how the key plant metabolites, e.g., flavonoids and fatty acids secreted by roots, regulate soil microbial communities to promote plant phosphorus (P) nutrition, growth and development remains unclear. Methods We determined whether the addition of different concentrations (0, 50 or 500 μmol kg −1 ) of myristic acid (fatty acid), quercetin, naringenin or luteolin (flavonoids) to the soil to improved soil organic P utilization efficiency and enhanced plant growth by changing microbial community. Results Flavonoids could directly regulate rhizosphere bacterial community structure, with a significant increase in the relative abundance of Micrococcaceae and Nocardioidaceae by the addition of 50 μmol kg −1 of naringenin, luteolin, 500 μmol kg −1 of quercetin, naringenin or luteolin. The addition of myristic acid had weaker impact on bacterial community structure. The altered bacterial community structure lead to the increased alkaline phosphatase activity in the rhizosphere to promote the mineralization of organic P, which could facilitate plant growth and P uptake to different extents. Conclusion Our results indicate that the addition of flavonoids enhanced organic P mineralization by selecting individuals which secreted more phosphatases. These findings can provide guidance for effective manipulation of composition of plant-microbial communities to increase plant P nutrition and/or efficiency of use of P fertilizers.</description><subject>Agriculture</subject><subject>Alkaline phosphatase</subject><subject>Bacteria</subject><subject>Biomedical and Life Sciences</subject><subject>Community structure</subject><subject>Ecology</subject><subject>Fatty acids</subject><subject>Flavonoids</subject><subject>Life Sciences</subject><subject>Metabolites</subject><subject>Microbial activity</subject><subject>Microbiomes</subject><subject>Microorganisms</subject><subject>Mineralization</subject><subject>Naringenin</subject><subject>Organic soils</subject><subject>Phosphorus</subject><subject>Plant growth</subject><subject>Plant nutrition</subject><subject>Plant Physiology</subject><subject>Plant Sciences</subject><subject>Plants</subject><subject>Quercetin</subject><subject>Relative abundance</subject><subject>Research Article</subject><subject>Rhizosphere</subject><subject>Soil improvement</subject><subject>Soil Science &amp; Conservation</subject><subject>Soils</subject><issn>0032-079X</issn><issn>1573-5036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9UEtLxDAQDqLg-vgDngKeq5NO026Py-ILFrwoeAtJmrhd-zJJhfXXm9oFbx6GYfgew_cRcsXghgEUt54xBlkCKSaQZ1Am_IgsGC8w4YD5MVkAYJpAUb6dkjPvdzDdLF8Qt6qqununQyO7QFsTpOqbOhhP63Zw_Zc5IMO293Hc6Ok4BPlhqNpT2QTjJnXYGuq29ffEMS5iUk-IbKju23bs6rCnPrhRh9GZC3JiZePN5WGfk9f7u5f1Y7J5fnharzaJRlaGxPJKScs1cIOlUmmRlymrVGm1BqMzVCnLpLYMqqLCXC0tWm2rolyyQiLaJZ6T69k35vgcjQ9i14-uiy8FxviYcY5pZKUzS7vee2esGFzdSrcXDMTUrZi7FbFb8dut4FGEs8gPU37j_qz_Uf0AuGyAZQ</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Wang, Siji</creator><creator>Duan, Shilong</creator><creator>George, Timothy S.</creator><creator>Feng, Gu</creator><creator>Zhang, Lin</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-1663-5620</orcidid></search><sort><creationdate>20240401</creationdate><title>Adding plant metabolites improve plant phosphorus uptake by altering the rhizosphere bacterial community structure</title><author>Wang, Siji ; Duan, Shilong ; George, Timothy S. ; Feng, Gu ; Zhang, Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-f5dbaf5c05e39bb276921db9fcc0ec43b214acf10d7d36b8f3fcfd79817a33f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Agriculture</topic><topic>Alkaline phosphatase</topic><topic>Bacteria</topic><topic>Biomedical and Life Sciences</topic><topic>Community structure</topic><topic>Ecology</topic><topic>Fatty acids</topic><topic>Flavonoids</topic><topic>Life Sciences</topic><topic>Metabolites</topic><topic>Microbial activity</topic><topic>Microbiomes</topic><topic>Microorganisms</topic><topic>Mineralization</topic><topic>Naringenin</topic><topic>Organic soils</topic><topic>Phosphorus</topic><topic>Plant growth</topic><topic>Plant nutrition</topic><topic>Plant Physiology</topic><topic>Plant Sciences</topic><topic>Plants</topic><topic>Quercetin</topic><topic>Relative abundance</topic><topic>Research Article</topic><topic>Rhizosphere</topic><topic>Soil improvement</topic><topic>Soil Science &amp; Conservation</topic><topic>Soils</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Siji</creatorcontrib><creatorcontrib>Duan, Shilong</creatorcontrib><creatorcontrib>George, Timothy S.</creatorcontrib><creatorcontrib>Feng, Gu</creatorcontrib><creatorcontrib>Zhang, Lin</creatorcontrib><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Plant and soil</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Siji</au><au>Duan, Shilong</au><au>George, Timothy S.</au><au>Feng, Gu</au><au>Zhang, Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adding plant metabolites improve plant phosphorus uptake by altering the rhizosphere bacterial community structure</atitle><jtitle>Plant and soil</jtitle><stitle>Plant Soil</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>497</volume><issue>1-2</issue><spage>503</spage><epage>522</epage><pages>503-522</pages><issn>0032-079X</issn><eissn>1573-5036</eissn><abstract>Background and aims Plant-derived metabolites play a crucial role in mediating plant–microbe interactions affecting plant development, health and ability to withstand biotic and abiotic stresses. However, how the key plant metabolites, e.g., flavonoids and fatty acids secreted by roots, regulate soil microbial communities to promote plant phosphorus (P) nutrition, growth and development remains unclear. Methods We determined whether the addition of different concentrations (0, 50 or 500 μmol kg −1 ) of myristic acid (fatty acid), quercetin, naringenin or luteolin (flavonoids) to the soil to improved soil organic P utilization efficiency and enhanced plant growth by changing microbial community. Results Flavonoids could directly regulate rhizosphere bacterial community structure, with a significant increase in the relative abundance of Micrococcaceae and Nocardioidaceae by the addition of 50 μmol kg −1 of naringenin, luteolin, 500 μmol kg −1 of quercetin, naringenin or luteolin. The addition of myristic acid had weaker impact on bacterial community structure. The altered bacterial community structure lead to the increased alkaline phosphatase activity in the rhizosphere to promote the mineralization of organic P, which could facilitate plant growth and P uptake to different extents. Conclusion Our results indicate that the addition of flavonoids enhanced organic P mineralization by selecting individuals which secreted more phosphatases. These findings can provide guidance for effective manipulation of composition of plant-microbial communities to increase plant P nutrition and/or efficiency of use of P fertilizers.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11104-023-06409-5</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-1663-5620</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0032-079X
ispartof Plant and soil, 2024-04, Vol.497 (1-2), p.503-522
issn 0032-079X
1573-5036
language eng
recordid cdi_proquest_journals_3003345532
source SpringerLink Journals - AutoHoldings
subjects Agriculture
Alkaline phosphatase
Bacteria
Biomedical and Life Sciences
Community structure
Ecology
Fatty acids
Flavonoids
Life Sciences
Metabolites
Microbial activity
Microbiomes
Microorganisms
Mineralization
Naringenin
Organic soils
Phosphorus
Plant growth
Plant nutrition
Plant Physiology
Plant Sciences
Plants
Quercetin
Relative abundance
Research Article
Rhizosphere
Soil improvement
Soil Science & Conservation
Soils
title Adding plant metabolites improve plant phosphorus uptake by altering the rhizosphere bacterial community structure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T05%3A56%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adding%20plant%20metabolites%20improve%20plant%20phosphorus%20uptake%20by%20altering%20the%20rhizosphere%20bacterial%20community%20structure&rft.jtitle=Plant%20and%20soil&rft.au=Wang,%20Siji&rft.date=2024-04-01&rft.volume=497&rft.issue=1-2&rft.spage=503&rft.epage=522&rft.pages=503-522&rft.issn=0032-079X&rft.eissn=1573-5036&rft_id=info:doi/10.1007/s11104-023-06409-5&rft_dat=%3Cproquest_cross%3E3003345532%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3003345532&rft_id=info:pmid/&rfr_iscdi=true