DASA: Delay-Adaptive Multi-Agent Stochastic Approximation
We consider a setting in which \(N\) agents aim to speedup a common Stochastic Approximation (SA) problem by acting in parallel and communicating with a central server. We assume that the up-link transmissions to the server are subject to asynchronous and potentially unbounded time-varying delays. T...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-08 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Nicolò Dal Fabbro Adibi, Arman Poor, H Vincent Kulkarni, Sanjeev R Mitra, Aritra Pappas, George J |
description | We consider a setting in which \(N\) agents aim to speedup a common Stochastic Approximation (SA) problem by acting in parallel and communicating with a central server. We assume that the up-link transmissions to the server are subject to asynchronous and potentially unbounded time-varying delays. To mitigate the effect of delays and stragglers while reaping the benefits of distributed computation, we propose \texttt{DASA}, a Delay-Adaptive algorithm for multi-agent Stochastic Approximation. We provide a finite-time analysis of \texttt{DASA} assuming that the agents' stochastic observation processes are independent Markov chains. Significantly advancing existing results, \texttt{DASA} is the first algorithm whose convergence rate depends only on the mixing time \(\tau_{mix}\) and on the average delay \(\tau_{avg}\) while jointly achieving an \(N\)-fold convergence speedup under Markovian sampling. Our work is relevant for various SA applications, including multi-agent and distributed temporal difference (TD) learning, Q-learning and stochastic optimization with correlated data. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3000383358</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3000383358</sourcerecordid><originalsourceid>FETCH-proquest_journals_30003833583</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwdHEMdrRScEnNSazUdUxJLCjJLEtV8C3NKcnUdUxPzStRCC7JT85ILC7JTFZwLCgoyq_IzE0syczP42FgTUvMKU7lhdLcDMpuriHOHrpANYWlqcUl8Vn5pUV5QKl4Y6CNxhbGxqYWxsSpAgAVFTXE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3000383358</pqid></control><display><type>article</type><title>DASA: Delay-Adaptive Multi-Agent Stochastic Approximation</title><source>Free E- Journals</source><creator>Nicolò Dal Fabbro ; Adibi, Arman ; Poor, H Vincent ; Kulkarni, Sanjeev R ; Mitra, Aritra ; Pappas, George J</creator><creatorcontrib>Nicolò Dal Fabbro ; Adibi, Arman ; Poor, H Vincent ; Kulkarni, Sanjeev R ; Mitra, Aritra ; Pappas, George J</creatorcontrib><description>We consider a setting in which \(N\) agents aim to speedup a common Stochastic Approximation (SA) problem by acting in parallel and communicating with a central server. We assume that the up-link transmissions to the server are subject to asynchronous and potentially unbounded time-varying delays. To mitigate the effect of delays and stragglers while reaping the benefits of distributed computation, we propose \texttt{DASA}, a Delay-Adaptive algorithm for multi-agent Stochastic Approximation. We provide a finite-time analysis of \texttt{DASA} assuming that the agents' stochastic observation processes are independent Markov chains. Significantly advancing existing results, \texttt{DASA} is the first algorithm whose convergence rate depends only on the mixing time \(\tau_{mix}\) and on the average delay \(\tau_{avg}\) while jointly achieving an \(N\)-fold convergence speedup under Markovian sampling. Our work is relevant for various SA applications, including multi-agent and distributed temporal difference (TD) learning, Q-learning and stochastic optimization with correlated data.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Adaptive algorithms ; Approximation ; Communication ; Convergence ; Delay ; Learning ; Markov chains ; Mathematical analysis ; Multiagent systems</subject><ispartof>arXiv.org, 2024-08</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Nicolò Dal Fabbro</creatorcontrib><creatorcontrib>Adibi, Arman</creatorcontrib><creatorcontrib>Poor, H Vincent</creatorcontrib><creatorcontrib>Kulkarni, Sanjeev R</creatorcontrib><creatorcontrib>Mitra, Aritra</creatorcontrib><creatorcontrib>Pappas, George J</creatorcontrib><title>DASA: Delay-Adaptive Multi-Agent Stochastic Approximation</title><title>arXiv.org</title><description>We consider a setting in which \(N\) agents aim to speedup a common Stochastic Approximation (SA) problem by acting in parallel and communicating with a central server. We assume that the up-link transmissions to the server are subject to asynchronous and potentially unbounded time-varying delays. To mitigate the effect of delays and stragglers while reaping the benefits of distributed computation, we propose \texttt{DASA}, a Delay-Adaptive algorithm for multi-agent Stochastic Approximation. We provide a finite-time analysis of \texttt{DASA} assuming that the agents' stochastic observation processes are independent Markov chains. Significantly advancing existing results, \texttt{DASA} is the first algorithm whose convergence rate depends only on the mixing time \(\tau_{mix}\) and on the average delay \(\tau_{avg}\) while jointly achieving an \(N\)-fold convergence speedup under Markovian sampling. Our work is relevant for various SA applications, including multi-agent and distributed temporal difference (TD) learning, Q-learning and stochastic optimization with correlated data.</description><subject>Adaptive algorithms</subject><subject>Approximation</subject><subject>Communication</subject><subject>Convergence</subject><subject>Delay</subject><subject>Learning</subject><subject>Markov chains</subject><subject>Mathematical analysis</subject><subject>Multiagent systems</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwdHEMdrRScEnNSazUdUxJLCjJLEtV8C3NKcnUdUxPzStRCC7JT85ILC7JTFZwLCgoyq_IzE0syczP42FgTUvMKU7lhdLcDMpuriHOHrpANYWlqcUl8Vn5pUV5QKl4Y6CNxhbGxqYWxsSpAgAVFTXE</recordid><startdate>20240802</startdate><enddate>20240802</enddate><creator>Nicolò Dal Fabbro</creator><creator>Adibi, Arman</creator><creator>Poor, H Vincent</creator><creator>Kulkarni, Sanjeev R</creator><creator>Mitra, Aritra</creator><creator>Pappas, George J</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240802</creationdate><title>DASA: Delay-Adaptive Multi-Agent Stochastic Approximation</title><author>Nicolò Dal Fabbro ; Adibi, Arman ; Poor, H Vincent ; Kulkarni, Sanjeev R ; Mitra, Aritra ; Pappas, George J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30003833583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptive algorithms</topic><topic>Approximation</topic><topic>Communication</topic><topic>Convergence</topic><topic>Delay</topic><topic>Learning</topic><topic>Markov chains</topic><topic>Mathematical analysis</topic><topic>Multiagent systems</topic><toplevel>online_resources</toplevel><creatorcontrib>Nicolò Dal Fabbro</creatorcontrib><creatorcontrib>Adibi, Arman</creatorcontrib><creatorcontrib>Poor, H Vincent</creatorcontrib><creatorcontrib>Kulkarni, Sanjeev R</creatorcontrib><creatorcontrib>Mitra, Aritra</creatorcontrib><creatorcontrib>Pappas, George J</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Proquest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nicolò Dal Fabbro</au><au>Adibi, Arman</au><au>Poor, H Vincent</au><au>Kulkarni, Sanjeev R</au><au>Mitra, Aritra</au><au>Pappas, George J</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>DASA: Delay-Adaptive Multi-Agent Stochastic Approximation</atitle><jtitle>arXiv.org</jtitle><date>2024-08-02</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We consider a setting in which \(N\) agents aim to speedup a common Stochastic Approximation (SA) problem by acting in parallel and communicating with a central server. We assume that the up-link transmissions to the server are subject to asynchronous and potentially unbounded time-varying delays. To mitigate the effect of delays and stragglers while reaping the benefits of distributed computation, we propose \texttt{DASA}, a Delay-Adaptive algorithm for multi-agent Stochastic Approximation. We provide a finite-time analysis of \texttt{DASA} assuming that the agents' stochastic observation processes are independent Markov chains. Significantly advancing existing results, \texttt{DASA} is the first algorithm whose convergence rate depends only on the mixing time \(\tau_{mix}\) and on the average delay \(\tau_{avg}\) while jointly achieving an \(N\)-fold convergence speedup under Markovian sampling. Our work is relevant for various SA applications, including multi-agent and distributed temporal difference (TD) learning, Q-learning and stochastic optimization with correlated data.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-08 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3000383358 |
source | Free E- Journals |
subjects | Adaptive algorithms Approximation Communication Convergence Delay Learning Markov chains Mathematical analysis Multiagent systems |
title | DASA: Delay-Adaptive Multi-Agent Stochastic Approximation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T06%3A18%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=DASA:%20Delay-Adaptive%20Multi-Agent%20Stochastic%20Approximation&rft.jtitle=arXiv.org&rft.au=Nicol%C3%B2%20Dal%20Fabbro&rft.date=2024-08-02&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3000383358%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3000383358&rft_id=info:pmid/&rfr_iscdi=true |