OPGW Icing Monitoring Method Based on Phase Difference Between Temperature Curves

To obtain the criterion of whether the optical fiber composite overhead ground wire (OPGW) is iced and to estimate the ice thickness, this letter establishes a three-dimensional temperature field model for OPGW under icing conditions and validates it through the experiments. Based on this, sine func...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power delivery 2024-04, Vol.39 (2), p.1303-1306
Hauptverfasser: Xu, Zhiniu, Song, Shipeng, Zhao, Lijuan, Li, Xianfeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1306
container_issue 2
container_start_page 1303
container_title IEEE transactions on power delivery
container_volume 39
creator Xu, Zhiniu
Song, Shipeng
Zhao, Lijuan
Li, Xianfeng
description To obtain the criterion of whether the optical fiber composite overhead ground wire (OPGW) is iced and to estimate the ice thickness, this letter establishes a three-dimensional temperature field model for OPGW under icing conditions and validates it through the experiments. Based on this, sine function is used to simulate the time-varying ambient temperature, and the lag characteristics of the optical fiber temperature are discovered through the simulation and also the experiment. The concept of phase difference in the curves between optical fiber temperature and ambient temperature is proposed, and the relationships between the phase difference and the mean ambient temperature, fluctuation amplitude of ambient temperature, ice thickness are investigated. It reveals that the influence of mean value and fluctuation amplitude of ambient temperature on the phase difference can be neglected, and the relationship between the phase difference and the ice thickness is obtained. The criterion for determining transmission line icing based on the phase difference is proposed, along with a formula for ice thickness estimation.
doi_str_mv 10.1109/TPWRD.2024.3350371
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2995314578</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10384828</ieee_id><sourcerecordid>2995314578</sourcerecordid><originalsourceid>FETCH-LOGICAL-c247t-4624b8914d79a96bc6fd375917c447ce246c7d67dd5d36d8f716fc2fee684e9b3</originalsourceid><addsrcrecordid>eNpNkEtPAjEUhRujiYj-AeOiievBvqaPpYAiCQY0GJbN0N7KEJnBdkbjvxeEhat7Fuc7N_kQuqakRykxd_PZ4nXYY4SJHuc54YqeoA41XGWCEX2KOkTrPNNGqXN0kdKaECKIIR30Mp2NFnjsyuodP9dV2dTxL0Kzqj3uFwk8ris8W-0SHpYhQITKAe5D8w1Q4TlsthCLpo2AB238gnSJzkLxkeDqeLvo7fFhPnjKJtPReHA_yRwTqsmEZGKpDRVemcLIpZPBc5UbqpwQygET0ikvlfe559LroKgMjgUAqQWYJe-i28PuNtafLaTGrus2VruXlhmTcypypXctdmi5WKcUIdhtLDdF_LGU2L06-6fO7tXZo7oddHOASgD4B3AtNNP8Fw_lahs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2995314578</pqid></control><display><type>article</type><title>OPGW Icing Monitoring Method Based on Phase Difference Between Temperature Curves</title><source>IEEE Electronic Library (IEL)</source><creator>Xu, Zhiniu ; Song, Shipeng ; Zhao, Lijuan ; Li, Xianfeng</creator><creatorcontrib>Xu, Zhiniu ; Song, Shipeng ; Zhao, Lijuan ; Li, Xianfeng</creatorcontrib><description>To obtain the criterion of whether the optical fiber composite overhead ground wire (OPGW) is iced and to estimate the ice thickness, this letter establishes a three-dimensional temperature field model for OPGW under icing conditions and validates it through the experiments. Based on this, sine function is used to simulate the time-varying ambient temperature, and the lag characteristics of the optical fiber temperature are discovered through the simulation and also the experiment. The concept of phase difference in the curves between optical fiber temperature and ambient temperature is proposed, and the relationships between the phase difference and the mean ambient temperature, fluctuation amplitude of ambient temperature, ice thickness are investigated. It reveals that the influence of mean value and fluctuation amplitude of ambient temperature on the phase difference can be neglected, and the relationship between the phase difference and the ice thickness is obtained. The criterion for determining transmission line icing based on the phase difference is proposed, along with a formula for ice thickness estimation.</description><identifier>ISSN: 0885-8977</identifier><identifier>EISSN: 1937-4208</identifier><identifier>DOI: 10.1109/TPWRD.2024.3350371</identifier><identifier>CODEN: ITPDE5</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Ambient temperature ; Amplitudes ; Criteria ; distributed optical fiber sensing ; Fiber composites ; Fluctuations ; Ice cover ; Ice formation ; Ice thickness ; ice thickness estimation ; Monitoring ; OPGW ; Optical fibers ; phase difference ; Phase shift ; Power transmission lines ; Temperature distribution ; Temperature measurement ; Temperature sensors ; Thickness ; Three dimensional models ; Transmission line measurements ; Transmission lines ; Trigonometric functions</subject><ispartof>IEEE transactions on power delivery, 2024-04, Vol.39 (2), p.1303-1306</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c247t-4624b8914d79a96bc6fd375917c447ce246c7d67dd5d36d8f716fc2fee684e9b3</cites><orcidid>0009-0009-1592-6395 ; 0000-0003-4345-0311 ; 0000-0002-4473-3682 ; 0009-0001-1616-438X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10384828$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10384828$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xu, Zhiniu</creatorcontrib><creatorcontrib>Song, Shipeng</creatorcontrib><creatorcontrib>Zhao, Lijuan</creatorcontrib><creatorcontrib>Li, Xianfeng</creatorcontrib><title>OPGW Icing Monitoring Method Based on Phase Difference Between Temperature Curves</title><title>IEEE transactions on power delivery</title><addtitle>TPWRD</addtitle><description>To obtain the criterion of whether the optical fiber composite overhead ground wire (OPGW) is iced and to estimate the ice thickness, this letter establishes a three-dimensional temperature field model for OPGW under icing conditions and validates it through the experiments. Based on this, sine function is used to simulate the time-varying ambient temperature, and the lag characteristics of the optical fiber temperature are discovered through the simulation and also the experiment. The concept of phase difference in the curves between optical fiber temperature and ambient temperature is proposed, and the relationships between the phase difference and the mean ambient temperature, fluctuation amplitude of ambient temperature, ice thickness are investigated. It reveals that the influence of mean value and fluctuation amplitude of ambient temperature on the phase difference can be neglected, and the relationship between the phase difference and the ice thickness is obtained. The criterion for determining transmission line icing based on the phase difference is proposed, along with a formula for ice thickness estimation.</description><subject>Ambient temperature</subject><subject>Amplitudes</subject><subject>Criteria</subject><subject>distributed optical fiber sensing</subject><subject>Fiber composites</subject><subject>Fluctuations</subject><subject>Ice cover</subject><subject>Ice formation</subject><subject>Ice thickness</subject><subject>ice thickness estimation</subject><subject>Monitoring</subject><subject>OPGW</subject><subject>Optical fibers</subject><subject>phase difference</subject><subject>Phase shift</subject><subject>Power transmission lines</subject><subject>Temperature distribution</subject><subject>Temperature measurement</subject><subject>Temperature sensors</subject><subject>Thickness</subject><subject>Three dimensional models</subject><subject>Transmission line measurements</subject><subject>Transmission lines</subject><subject>Trigonometric functions</subject><issn>0885-8977</issn><issn>1937-4208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEtPAjEUhRujiYj-AeOiievBvqaPpYAiCQY0GJbN0N7KEJnBdkbjvxeEhat7Fuc7N_kQuqakRykxd_PZ4nXYY4SJHuc54YqeoA41XGWCEX2KOkTrPNNGqXN0kdKaECKIIR30Mp2NFnjsyuodP9dV2dTxL0Kzqj3uFwk8ris8W-0SHpYhQITKAe5D8w1Q4TlsthCLpo2AB238gnSJzkLxkeDqeLvo7fFhPnjKJtPReHA_yRwTqsmEZGKpDRVemcLIpZPBc5UbqpwQygET0ikvlfe559LroKgMjgUAqQWYJe-i28PuNtafLaTGrus2VruXlhmTcypypXctdmi5WKcUIdhtLDdF_LGU2L06-6fO7tXZo7oddHOASgD4B3AtNNP8Fw_lahs</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Xu, Zhiniu</creator><creator>Song, Shipeng</creator><creator>Zhao, Lijuan</creator><creator>Li, Xianfeng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0009-1592-6395</orcidid><orcidid>https://orcid.org/0000-0003-4345-0311</orcidid><orcidid>https://orcid.org/0000-0002-4473-3682</orcidid><orcidid>https://orcid.org/0009-0001-1616-438X</orcidid></search><sort><creationdate>20240401</creationdate><title>OPGW Icing Monitoring Method Based on Phase Difference Between Temperature Curves</title><author>Xu, Zhiniu ; Song, Shipeng ; Zhao, Lijuan ; Li, Xianfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c247t-4624b8914d79a96bc6fd375917c447ce246c7d67dd5d36d8f716fc2fee684e9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ambient temperature</topic><topic>Amplitudes</topic><topic>Criteria</topic><topic>distributed optical fiber sensing</topic><topic>Fiber composites</topic><topic>Fluctuations</topic><topic>Ice cover</topic><topic>Ice formation</topic><topic>Ice thickness</topic><topic>ice thickness estimation</topic><topic>Monitoring</topic><topic>OPGW</topic><topic>Optical fibers</topic><topic>phase difference</topic><topic>Phase shift</topic><topic>Power transmission lines</topic><topic>Temperature distribution</topic><topic>Temperature measurement</topic><topic>Temperature sensors</topic><topic>Thickness</topic><topic>Three dimensional models</topic><topic>Transmission line measurements</topic><topic>Transmission lines</topic><topic>Trigonometric functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Zhiniu</creatorcontrib><creatorcontrib>Song, Shipeng</creatorcontrib><creatorcontrib>Zhao, Lijuan</creatorcontrib><creatorcontrib>Li, Xianfeng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power delivery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xu, Zhiniu</au><au>Song, Shipeng</au><au>Zhao, Lijuan</au><au>Li, Xianfeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>OPGW Icing Monitoring Method Based on Phase Difference Between Temperature Curves</atitle><jtitle>IEEE transactions on power delivery</jtitle><stitle>TPWRD</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>39</volume><issue>2</issue><spage>1303</spage><epage>1306</epage><pages>1303-1306</pages><issn>0885-8977</issn><eissn>1937-4208</eissn><coden>ITPDE5</coden><abstract>To obtain the criterion of whether the optical fiber composite overhead ground wire (OPGW) is iced and to estimate the ice thickness, this letter establishes a three-dimensional temperature field model for OPGW under icing conditions and validates it through the experiments. Based on this, sine function is used to simulate the time-varying ambient temperature, and the lag characteristics of the optical fiber temperature are discovered through the simulation and also the experiment. The concept of phase difference in the curves between optical fiber temperature and ambient temperature is proposed, and the relationships between the phase difference and the mean ambient temperature, fluctuation amplitude of ambient temperature, ice thickness are investigated. It reveals that the influence of mean value and fluctuation amplitude of ambient temperature on the phase difference can be neglected, and the relationship between the phase difference and the ice thickness is obtained. The criterion for determining transmission line icing based on the phase difference is proposed, along with a formula for ice thickness estimation.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRD.2024.3350371</doi><tpages>4</tpages><orcidid>https://orcid.org/0009-0009-1592-6395</orcidid><orcidid>https://orcid.org/0000-0003-4345-0311</orcidid><orcidid>https://orcid.org/0000-0002-4473-3682</orcidid><orcidid>https://orcid.org/0009-0001-1616-438X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8977
ispartof IEEE transactions on power delivery, 2024-04, Vol.39 (2), p.1303-1306
issn 0885-8977
1937-4208
language eng
recordid cdi_proquest_journals_2995314578
source IEEE Electronic Library (IEL)
subjects Ambient temperature
Amplitudes
Criteria
distributed optical fiber sensing
Fiber composites
Fluctuations
Ice cover
Ice formation
Ice thickness
ice thickness estimation
Monitoring
OPGW
Optical fibers
phase difference
Phase shift
Power transmission lines
Temperature distribution
Temperature measurement
Temperature sensors
Thickness
Three dimensional models
Transmission line measurements
Transmission lines
Trigonometric functions
title OPGW Icing Monitoring Method Based on Phase Difference Between Temperature Curves
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T02%3A21%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=OPGW%20Icing%20Monitoring%20Method%20Based%20on%20Phase%20Difference%20Between%20Temperature%20Curves&rft.jtitle=IEEE%20transactions%20on%20power%20delivery&rft.au=Xu,%20Zhiniu&rft.date=2024-04-01&rft.volume=39&rft.issue=2&rft.spage=1303&rft.epage=1306&rft.pages=1303-1306&rft.issn=0885-8977&rft.eissn=1937-4208&rft.coden=ITPDE5&rft_id=info:doi/10.1109/TPWRD.2024.3350371&rft_dat=%3Cproquest_RIE%3E2995314578%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2995314578&rft_id=info:pmid/&rft_ieee_id=10384828&rfr_iscdi=true