Synthetic IMU Datasets and Protocols Can Simplify Fall Detection Experiments and Optimize Sensor Configuration
Falls represent a significant cause of injury among the elderly population. Extensive research has been devoted to the utilization of wearable IMU sensors in conjunction with machine learning techniques for fall detection. To address the challenge of acquiring costly training data, this paper presen...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on neural systems and rehabilitation engineering 2024-01, Vol.32, p.1-1 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on neural systems and rehabilitation engineering |
container_volume | 32 |
creator | Tang, Jie He, Bin Xu, Junkai Tan, Tian Wang, Zhipeng Zhou, Yanmin Jiang, Shuo |
description | Falls represent a significant cause of injury among the elderly population. Extensive research has been devoted to the utilization of wearable IMU sensors in conjunction with machine learning techniques for fall detection. To address the challenge of acquiring costly training data, this paper presents a novel method that generates a substantial volume of synthetic IMU data with minimal actual fall experiments. First, unmarked 3D motion capture technology is employed to reconstruct human movements. Subsequently, utilizing the biomechanical simulation platform Opensim and forward kinematic methods, an ample amount of training data from various body segments can be custom generated. Synthetic IMU data was then used to train a machine learning model, achieving testing accuracies of 91.99% and 86.62% on two distinct datasets of actual fall-related IMU data. Building upon the simulation framework, this paper further optimized the single IMU attachment position and multiple IMU combinations on fall detection. The proposed method simplifies fall detection data acquisition experiments, provides novel venue for generating low cost synthetic data in scenario where acquiring data for machine learning is challenging and paves the way for customizing machine learning configurations. |
doi_str_mv | 10.1109/TNSRE.2024.3370396 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2995314548</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10445338</ieee_id><doaj_id>oai_doaj_org_article_92d6e4ceb5234a4695a48566ac0a0d3f</doaj_id><sourcerecordid>2932435912</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-67ca1670bd163db18d50f6b6cc6e5371d15602f36cd79698336cb8e2ec2397ef3</originalsourceid><addsrcrecordid>eNpdkV2L1DAUhoso7rr6B0Qk4I03HfPd9FJmZ3VgdcXZvQ5pcrpmaJOatOD46213xkW8yiE878M5vEXxmuAVIbj-cPt1932zopjyFWMVZrV8UpwTIVSJKcFPl5nxkjOKz4oXOe8xJpUU1fPijCmOFcbqvAi7Qxh_wOgt2n65Q5dmNBnGjExw6FuKY7Sxy2htAtr5fuh8e0BXpuvQJYxgRx8D2vwaIPkewil1M4y-978B7SDkmNA6htbfT8ks9MviWWu6DK9O70Vxd7W5XX8ur28-bdcfr0vLJR1LWVlDZIUbRyRzDVFO4FY20loJglXEESExbZm0rqplrdg8NQooWMrqClp2UWyPXhfNXg_zfiYddDReP3zEdK9Nmo_uQNfUSeAWGkEZN1zWwnAlpDQWG-zY4np_dA0p_pwgj7r32ULXmQBxyprWjHImakJn9N1_6D5OKcyXzlQtGOGCq5miR8qmmHOC9nFBgvXSrH5oVi_N6lOzc-jtST01PbjHyN8qZ-DNEfAA8I-Rc8GYYn8Ad42nQA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2995314548</pqid></control><display><type>article</type><title>Synthetic IMU Datasets and Protocols Can Simplify Fall Detection Experiments and Optimize Sensor Configuration</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Tang, Jie ; He, Bin ; Xu, Junkai ; Tan, Tian ; Wang, Zhipeng ; Zhou, Yanmin ; Jiang, Shuo</creator><creatorcontrib>Tang, Jie ; He, Bin ; Xu, Junkai ; Tan, Tian ; Wang, Zhipeng ; Zhou, Yanmin ; Jiang, Shuo</creatorcontrib><description>Falls represent a significant cause of injury among the elderly population. Extensive research has been devoted to the utilization of wearable IMU sensors in conjunction with machine learning techniques for fall detection. To address the challenge of acquiring costly training data, this paper presents a novel method that generates a substantial volume of synthetic IMU data with minimal actual fall experiments. First, unmarked 3D motion capture technology is employed to reconstruct human movements. Subsequently, utilizing the biomechanical simulation platform Opensim and forward kinematic methods, an ample amount of training data from various body segments can be custom generated. Synthetic IMU data was then used to train a machine learning model, achieving testing accuracies of 91.99% and 86.62% on two distinct datasets of actual fall-related IMU data. Building upon the simulation framework, this paper further optimized the single IMU attachment position and multiple IMU combinations on fall detection. The proposed method simplifies fall detection data acquisition experiments, provides novel venue for generating low cost synthetic data in scenario where acquiring data for machine learning is challenging and paves the way for customizing machine learning configurations.</description><identifier>ISSN: 1534-4320</identifier><identifier>ISSN: 1558-0210</identifier><identifier>EISSN: 1558-0210</identifier><identifier>DOI: 10.1109/TNSRE.2024.3370396</identifier><identifier>PMID: 38408008</identifier><identifier>CODEN: ITNSB3</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Aged ; Biological system modeling ; Biomechanical Phenomena ; Biomechanics ; Configurations ; Convolutional neural networks ; Data acquisition ; Data augmentation ; Data models ; Datasets ; Fall detection ; Human motion ; Humans ; IMU ; Injuries ; Kinematics ; Learning algorithms ; Machine Learning ; Motion capture ; Movement ; Older adults ; Older people ; Opensim ; Synthetic data ; Three dimensional motion ; Videos ; Wearable Electronic Devices</subject><ispartof>IEEE transactions on neural systems and rehabilitation engineering, 2024-01, Vol.32, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-67ca1670bd163db18d50f6b6cc6e5371d15602f36cd79698336cb8e2ec2397ef3</citedby><cites>FETCH-LOGICAL-c462t-67ca1670bd163db18d50f6b6cc6e5371d15602f36cd79698336cb8e2ec2397ef3</cites><orcidid>0000-0001-7824-1179 ; 0000-0003-4639-8301 ; 0000-0003-4632-9170 ; 0000-0003-3645-6301 ; 0009-0000-4064-7042 ; 0000-0003-3193-6269</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,2102,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38408008$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tang, Jie</creatorcontrib><creatorcontrib>He, Bin</creatorcontrib><creatorcontrib>Xu, Junkai</creatorcontrib><creatorcontrib>Tan, Tian</creatorcontrib><creatorcontrib>Wang, Zhipeng</creatorcontrib><creatorcontrib>Zhou, Yanmin</creatorcontrib><creatorcontrib>Jiang, Shuo</creatorcontrib><title>Synthetic IMU Datasets and Protocols Can Simplify Fall Detection Experiments and Optimize Sensor Configuration</title><title>IEEE transactions on neural systems and rehabilitation engineering</title><addtitle>TNSRE</addtitle><addtitle>IEEE Trans Neural Syst Rehabil Eng</addtitle><description>Falls represent a significant cause of injury among the elderly population. Extensive research has been devoted to the utilization of wearable IMU sensors in conjunction with machine learning techniques for fall detection. To address the challenge of acquiring costly training data, this paper presents a novel method that generates a substantial volume of synthetic IMU data with minimal actual fall experiments. First, unmarked 3D motion capture technology is employed to reconstruct human movements. Subsequently, utilizing the biomechanical simulation platform Opensim and forward kinematic methods, an ample amount of training data from various body segments can be custom generated. Synthetic IMU data was then used to train a machine learning model, achieving testing accuracies of 91.99% and 86.62% on two distinct datasets of actual fall-related IMU data. Building upon the simulation framework, this paper further optimized the single IMU attachment position and multiple IMU combinations on fall detection. The proposed method simplifies fall detection data acquisition experiments, provides novel venue for generating low cost synthetic data in scenario where acquiring data for machine learning is challenging and paves the way for customizing machine learning configurations.</description><subject>Aged</subject><subject>Biological system modeling</subject><subject>Biomechanical Phenomena</subject><subject>Biomechanics</subject><subject>Configurations</subject><subject>Convolutional neural networks</subject><subject>Data acquisition</subject><subject>Data augmentation</subject><subject>Data models</subject><subject>Datasets</subject><subject>Fall detection</subject><subject>Human motion</subject><subject>Humans</subject><subject>IMU</subject><subject>Injuries</subject><subject>Kinematics</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Motion capture</subject><subject>Movement</subject><subject>Older adults</subject><subject>Older people</subject><subject>Opensim</subject><subject>Synthetic data</subject><subject>Three dimensional motion</subject><subject>Videos</subject><subject>Wearable Electronic Devices</subject><issn>1534-4320</issn><issn>1558-0210</issn><issn>1558-0210</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNpdkV2L1DAUhoso7rr6B0Qk4I03HfPd9FJmZ3VgdcXZvQ5pcrpmaJOatOD46213xkW8yiE878M5vEXxmuAVIbj-cPt1932zopjyFWMVZrV8UpwTIVSJKcFPl5nxkjOKz4oXOe8xJpUU1fPijCmOFcbqvAi7Qxh_wOgt2n65Q5dmNBnGjExw6FuKY7Sxy2htAtr5fuh8e0BXpuvQJYxgRx8D2vwaIPkewil1M4y-978B7SDkmNA6htbfT8ks9MviWWu6DK9O70Vxd7W5XX8ur28-bdcfr0vLJR1LWVlDZIUbRyRzDVFO4FY20loJglXEESExbZm0rqplrdg8NQooWMrqClp2UWyPXhfNXg_zfiYddDReP3zEdK9Nmo_uQNfUSeAWGkEZN1zWwnAlpDQWG-zY4np_dA0p_pwgj7r32ULXmQBxyprWjHImakJn9N1_6D5OKcyXzlQtGOGCq5miR8qmmHOC9nFBgvXSrH5oVi_N6lOzc-jtST01PbjHyN8qZ-DNEfAA8I-Rc8GYYn8Ad42nQA</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Tang, Jie</creator><creator>He, Bin</creator><creator>Xu, Junkai</creator><creator>Tan, Tian</creator><creator>Wang, Zhipeng</creator><creator>Zhou, Yanmin</creator><creator>Jiang, Shuo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7824-1179</orcidid><orcidid>https://orcid.org/0000-0003-4639-8301</orcidid><orcidid>https://orcid.org/0000-0003-4632-9170</orcidid><orcidid>https://orcid.org/0000-0003-3645-6301</orcidid><orcidid>https://orcid.org/0009-0000-4064-7042</orcidid><orcidid>https://orcid.org/0000-0003-3193-6269</orcidid></search><sort><creationdate>20240101</creationdate><title>Synthetic IMU Datasets and Protocols Can Simplify Fall Detection Experiments and Optimize Sensor Configuration</title><author>Tang, Jie ; He, Bin ; Xu, Junkai ; Tan, Tian ; Wang, Zhipeng ; Zhou, Yanmin ; Jiang, Shuo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-67ca1670bd163db18d50f6b6cc6e5371d15602f36cd79698336cb8e2ec2397ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aged</topic><topic>Biological system modeling</topic><topic>Biomechanical Phenomena</topic><topic>Biomechanics</topic><topic>Configurations</topic><topic>Convolutional neural networks</topic><topic>Data acquisition</topic><topic>Data augmentation</topic><topic>Data models</topic><topic>Datasets</topic><topic>Fall detection</topic><topic>Human motion</topic><topic>Humans</topic><topic>IMU</topic><topic>Injuries</topic><topic>Kinematics</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Motion capture</topic><topic>Movement</topic><topic>Older adults</topic><topic>Older people</topic><topic>Opensim</topic><topic>Synthetic data</topic><topic>Three dimensional motion</topic><topic>Videos</topic><topic>Wearable Electronic Devices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Jie</creatorcontrib><creatorcontrib>He, Bin</creatorcontrib><creatorcontrib>Xu, Junkai</creatorcontrib><creatorcontrib>Tan, Tian</creatorcontrib><creatorcontrib>Wang, Zhipeng</creatorcontrib><creatorcontrib>Zhou, Yanmin</creatorcontrib><creatorcontrib>Jiang, Shuo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Jie</au><au>He, Bin</au><au>Xu, Junkai</au><au>Tan, Tian</au><au>Wang, Zhipeng</au><au>Zhou, Yanmin</au><au>Jiang, Shuo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthetic IMU Datasets and Protocols Can Simplify Fall Detection Experiments and Optimize Sensor Configuration</atitle><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle><stitle>TNSRE</stitle><addtitle>IEEE Trans Neural Syst Rehabil Eng</addtitle><date>2024-01-01</date><risdate>2024</risdate><volume>32</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1534-4320</issn><issn>1558-0210</issn><eissn>1558-0210</eissn><coden>ITNSB3</coden><abstract>Falls represent a significant cause of injury among the elderly population. Extensive research has been devoted to the utilization of wearable IMU sensors in conjunction with machine learning techniques for fall detection. To address the challenge of acquiring costly training data, this paper presents a novel method that generates a substantial volume of synthetic IMU data with minimal actual fall experiments. First, unmarked 3D motion capture technology is employed to reconstruct human movements. Subsequently, utilizing the biomechanical simulation platform Opensim and forward kinematic methods, an ample amount of training data from various body segments can be custom generated. Synthetic IMU data was then used to train a machine learning model, achieving testing accuracies of 91.99% and 86.62% on two distinct datasets of actual fall-related IMU data. Building upon the simulation framework, this paper further optimized the single IMU attachment position and multiple IMU combinations on fall detection. The proposed method simplifies fall detection data acquisition experiments, provides novel venue for generating low cost synthetic data in scenario where acquiring data for machine learning is challenging and paves the way for customizing machine learning configurations.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>38408008</pmid><doi>10.1109/TNSRE.2024.3370396</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-7824-1179</orcidid><orcidid>https://orcid.org/0000-0003-4639-8301</orcidid><orcidid>https://orcid.org/0000-0003-4632-9170</orcidid><orcidid>https://orcid.org/0000-0003-3645-6301</orcidid><orcidid>https://orcid.org/0009-0000-4064-7042</orcidid><orcidid>https://orcid.org/0000-0003-3193-6269</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1534-4320 |
ispartof | IEEE transactions on neural systems and rehabilitation engineering, 2024-01, Vol.32, p.1-1 |
issn | 1534-4320 1558-0210 1558-0210 |
language | eng |
recordid | cdi_proquest_journals_2995314548 |
source | MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Aged Biological system modeling Biomechanical Phenomena Biomechanics Configurations Convolutional neural networks Data acquisition Data augmentation Data models Datasets Fall detection Human motion Humans IMU Injuries Kinematics Learning algorithms Machine Learning Motion capture Movement Older adults Older people Opensim Synthetic data Three dimensional motion Videos Wearable Electronic Devices |
title | Synthetic IMU Datasets and Protocols Can Simplify Fall Detection Experiments and Optimize Sensor Configuration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A57%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthetic%20IMU%20Datasets%20and%20Protocols%20Can%20Simplify%20Fall%20Detection%20Experiments%20and%20Optimize%20Sensor%20Configuration&rft.jtitle=IEEE%20transactions%20on%20neural%20systems%20and%20rehabilitation%20engineering&rft.au=Tang,%20Jie&rft.date=2024-01-01&rft.volume=32&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1534-4320&rft.eissn=1558-0210&rft.coden=ITNSB3&rft_id=info:doi/10.1109/TNSRE.2024.3370396&rft_dat=%3Cproquest_doaj_%3E2932435912%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2995314548&rft_id=info:pmid/38408008&rft_ieee_id=10445338&rft_doaj_id=oai_doaj_org_article_92d6e4ceb5234a4695a48566ac0a0d3f&rfr_iscdi=true |