Synthetic IMU Datasets and Protocols Can Simplify Fall Detection Experiments and Optimize Sensor Configuration

Falls represent a significant cause of injury among the elderly population. Extensive research has been devoted to the utilization of wearable IMU sensors in conjunction with machine learning techniques for fall detection. To address the challenge of acquiring costly training data, this paper presen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on neural systems and rehabilitation engineering 2024-01, Vol.32, p.1-1
Hauptverfasser: Tang, Jie, He, Bin, Xu, Junkai, Tan, Tian, Wang, Zhipeng, Zhou, Yanmin, Jiang, Shuo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE transactions on neural systems and rehabilitation engineering
container_volume 32
creator Tang, Jie
He, Bin
Xu, Junkai
Tan, Tian
Wang, Zhipeng
Zhou, Yanmin
Jiang, Shuo
description Falls represent a significant cause of injury among the elderly population. Extensive research has been devoted to the utilization of wearable IMU sensors in conjunction with machine learning techniques for fall detection. To address the challenge of acquiring costly training data, this paper presents a novel method that generates a substantial volume of synthetic IMU data with minimal actual fall experiments. First, unmarked 3D motion capture technology is employed to reconstruct human movements. Subsequently, utilizing the biomechanical simulation platform Opensim and forward kinematic methods, an ample amount of training data from various body segments can be custom generated. Synthetic IMU data was then used to train a machine learning model, achieving testing accuracies of 91.99% and 86.62% on two distinct datasets of actual fall-related IMU data. Building upon the simulation framework, this paper further optimized the single IMU attachment position and multiple IMU combinations on fall detection. The proposed method simplifies fall detection data acquisition experiments, provides novel venue for generating low cost synthetic data in scenario where acquiring data for machine learning is challenging and paves the way for customizing machine learning configurations.
doi_str_mv 10.1109/TNSRE.2024.3370396
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2995314548</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10445338</ieee_id><doaj_id>oai_doaj_org_article_92d6e4ceb5234a4695a48566ac0a0d3f</doaj_id><sourcerecordid>2932435912</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-67ca1670bd163db18d50f6b6cc6e5371d15602f36cd79698336cb8e2ec2397ef3</originalsourceid><addsrcrecordid>eNpdkV2L1DAUhoso7rr6B0Qk4I03HfPd9FJmZ3VgdcXZvQ5pcrpmaJOatOD46213xkW8yiE878M5vEXxmuAVIbj-cPt1932zopjyFWMVZrV8UpwTIVSJKcFPl5nxkjOKz4oXOe8xJpUU1fPijCmOFcbqvAi7Qxh_wOgt2n65Q5dmNBnGjExw6FuKY7Sxy2htAtr5fuh8e0BXpuvQJYxgRx8D2vwaIPkewil1M4y-978B7SDkmNA6htbfT8ks9MviWWu6DK9O70Vxd7W5XX8ur28-bdcfr0vLJR1LWVlDZIUbRyRzDVFO4FY20loJglXEESExbZm0rqplrdg8NQooWMrqClp2UWyPXhfNXg_zfiYddDReP3zEdK9Nmo_uQNfUSeAWGkEZN1zWwnAlpDQWG-zY4np_dA0p_pwgj7r32ULXmQBxyprWjHImakJn9N1_6D5OKcyXzlQtGOGCq5miR8qmmHOC9nFBgvXSrH5oVi_N6lOzc-jtST01PbjHyN8qZ-DNEfAA8I-Rc8GYYn8Ad42nQA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2995314548</pqid></control><display><type>article</type><title>Synthetic IMU Datasets and Protocols Can Simplify Fall Detection Experiments and Optimize Sensor Configuration</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Tang, Jie ; He, Bin ; Xu, Junkai ; Tan, Tian ; Wang, Zhipeng ; Zhou, Yanmin ; Jiang, Shuo</creator><creatorcontrib>Tang, Jie ; He, Bin ; Xu, Junkai ; Tan, Tian ; Wang, Zhipeng ; Zhou, Yanmin ; Jiang, Shuo</creatorcontrib><description>Falls represent a significant cause of injury among the elderly population. Extensive research has been devoted to the utilization of wearable IMU sensors in conjunction with machine learning techniques for fall detection. To address the challenge of acquiring costly training data, this paper presents a novel method that generates a substantial volume of synthetic IMU data with minimal actual fall experiments. First, unmarked 3D motion capture technology is employed to reconstruct human movements. Subsequently, utilizing the biomechanical simulation platform Opensim and forward kinematic methods, an ample amount of training data from various body segments can be custom generated. Synthetic IMU data was then used to train a machine learning model, achieving testing accuracies of 91.99% and 86.62% on two distinct datasets of actual fall-related IMU data. Building upon the simulation framework, this paper further optimized the single IMU attachment position and multiple IMU combinations on fall detection. The proposed method simplifies fall detection data acquisition experiments, provides novel venue for generating low cost synthetic data in scenario where acquiring data for machine learning is challenging and paves the way for customizing machine learning configurations.</description><identifier>ISSN: 1534-4320</identifier><identifier>ISSN: 1558-0210</identifier><identifier>EISSN: 1558-0210</identifier><identifier>DOI: 10.1109/TNSRE.2024.3370396</identifier><identifier>PMID: 38408008</identifier><identifier>CODEN: ITNSB3</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Aged ; Biological system modeling ; Biomechanical Phenomena ; Biomechanics ; Configurations ; Convolutional neural networks ; Data acquisition ; Data augmentation ; Data models ; Datasets ; Fall detection ; Human motion ; Humans ; IMU ; Injuries ; Kinematics ; Learning algorithms ; Machine Learning ; Motion capture ; Movement ; Older adults ; Older people ; Opensim ; Synthetic data ; Three dimensional motion ; Videos ; Wearable Electronic Devices</subject><ispartof>IEEE transactions on neural systems and rehabilitation engineering, 2024-01, Vol.32, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-67ca1670bd163db18d50f6b6cc6e5371d15602f36cd79698336cb8e2ec2397ef3</citedby><cites>FETCH-LOGICAL-c462t-67ca1670bd163db18d50f6b6cc6e5371d15602f36cd79698336cb8e2ec2397ef3</cites><orcidid>0000-0001-7824-1179 ; 0000-0003-4639-8301 ; 0000-0003-4632-9170 ; 0000-0003-3645-6301 ; 0009-0000-4064-7042 ; 0000-0003-3193-6269</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,2102,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38408008$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tang, Jie</creatorcontrib><creatorcontrib>He, Bin</creatorcontrib><creatorcontrib>Xu, Junkai</creatorcontrib><creatorcontrib>Tan, Tian</creatorcontrib><creatorcontrib>Wang, Zhipeng</creatorcontrib><creatorcontrib>Zhou, Yanmin</creatorcontrib><creatorcontrib>Jiang, Shuo</creatorcontrib><title>Synthetic IMU Datasets and Protocols Can Simplify Fall Detection Experiments and Optimize Sensor Configuration</title><title>IEEE transactions on neural systems and rehabilitation engineering</title><addtitle>TNSRE</addtitle><addtitle>IEEE Trans Neural Syst Rehabil Eng</addtitle><description>Falls represent a significant cause of injury among the elderly population. Extensive research has been devoted to the utilization of wearable IMU sensors in conjunction with machine learning techniques for fall detection. To address the challenge of acquiring costly training data, this paper presents a novel method that generates a substantial volume of synthetic IMU data with minimal actual fall experiments. First, unmarked 3D motion capture technology is employed to reconstruct human movements. Subsequently, utilizing the biomechanical simulation platform Opensim and forward kinematic methods, an ample amount of training data from various body segments can be custom generated. Synthetic IMU data was then used to train a machine learning model, achieving testing accuracies of 91.99% and 86.62% on two distinct datasets of actual fall-related IMU data. Building upon the simulation framework, this paper further optimized the single IMU attachment position and multiple IMU combinations on fall detection. The proposed method simplifies fall detection data acquisition experiments, provides novel venue for generating low cost synthetic data in scenario where acquiring data for machine learning is challenging and paves the way for customizing machine learning configurations.</description><subject>Aged</subject><subject>Biological system modeling</subject><subject>Biomechanical Phenomena</subject><subject>Biomechanics</subject><subject>Configurations</subject><subject>Convolutional neural networks</subject><subject>Data acquisition</subject><subject>Data augmentation</subject><subject>Data models</subject><subject>Datasets</subject><subject>Fall detection</subject><subject>Human motion</subject><subject>Humans</subject><subject>IMU</subject><subject>Injuries</subject><subject>Kinematics</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Motion capture</subject><subject>Movement</subject><subject>Older adults</subject><subject>Older people</subject><subject>Opensim</subject><subject>Synthetic data</subject><subject>Three dimensional motion</subject><subject>Videos</subject><subject>Wearable Electronic Devices</subject><issn>1534-4320</issn><issn>1558-0210</issn><issn>1558-0210</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNpdkV2L1DAUhoso7rr6B0Qk4I03HfPd9FJmZ3VgdcXZvQ5pcrpmaJOatOD46213xkW8yiE878M5vEXxmuAVIbj-cPt1932zopjyFWMVZrV8UpwTIVSJKcFPl5nxkjOKz4oXOe8xJpUU1fPijCmOFcbqvAi7Qxh_wOgt2n65Q5dmNBnGjExw6FuKY7Sxy2htAtr5fuh8e0BXpuvQJYxgRx8D2vwaIPkewil1M4y-978B7SDkmNA6htbfT8ks9MviWWu6DK9O70Vxd7W5XX8ur28-bdcfr0vLJR1LWVlDZIUbRyRzDVFO4FY20loJglXEESExbZm0rqplrdg8NQooWMrqClp2UWyPXhfNXg_zfiYddDReP3zEdK9Nmo_uQNfUSeAWGkEZN1zWwnAlpDQWG-zY4np_dA0p_pwgj7r32ULXmQBxyprWjHImakJn9N1_6D5OKcyXzlQtGOGCq5miR8qmmHOC9nFBgvXSrH5oVi_N6lOzc-jtST01PbjHyN8qZ-DNEfAA8I-Rc8GYYn8Ad42nQA</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Tang, Jie</creator><creator>He, Bin</creator><creator>Xu, Junkai</creator><creator>Tan, Tian</creator><creator>Wang, Zhipeng</creator><creator>Zhou, Yanmin</creator><creator>Jiang, Shuo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7824-1179</orcidid><orcidid>https://orcid.org/0000-0003-4639-8301</orcidid><orcidid>https://orcid.org/0000-0003-4632-9170</orcidid><orcidid>https://orcid.org/0000-0003-3645-6301</orcidid><orcidid>https://orcid.org/0009-0000-4064-7042</orcidid><orcidid>https://orcid.org/0000-0003-3193-6269</orcidid></search><sort><creationdate>20240101</creationdate><title>Synthetic IMU Datasets and Protocols Can Simplify Fall Detection Experiments and Optimize Sensor Configuration</title><author>Tang, Jie ; He, Bin ; Xu, Junkai ; Tan, Tian ; Wang, Zhipeng ; Zhou, Yanmin ; Jiang, Shuo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-67ca1670bd163db18d50f6b6cc6e5371d15602f36cd79698336cb8e2ec2397ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aged</topic><topic>Biological system modeling</topic><topic>Biomechanical Phenomena</topic><topic>Biomechanics</topic><topic>Configurations</topic><topic>Convolutional neural networks</topic><topic>Data acquisition</topic><topic>Data augmentation</topic><topic>Data models</topic><topic>Datasets</topic><topic>Fall detection</topic><topic>Human motion</topic><topic>Humans</topic><topic>IMU</topic><topic>Injuries</topic><topic>Kinematics</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Motion capture</topic><topic>Movement</topic><topic>Older adults</topic><topic>Older people</topic><topic>Opensim</topic><topic>Synthetic data</topic><topic>Three dimensional motion</topic><topic>Videos</topic><topic>Wearable Electronic Devices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Jie</creatorcontrib><creatorcontrib>He, Bin</creatorcontrib><creatorcontrib>Xu, Junkai</creatorcontrib><creatorcontrib>Tan, Tian</creatorcontrib><creatorcontrib>Wang, Zhipeng</creatorcontrib><creatorcontrib>Zhou, Yanmin</creatorcontrib><creatorcontrib>Jiang, Shuo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Jie</au><au>He, Bin</au><au>Xu, Junkai</au><au>Tan, Tian</au><au>Wang, Zhipeng</au><au>Zhou, Yanmin</au><au>Jiang, Shuo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthetic IMU Datasets and Protocols Can Simplify Fall Detection Experiments and Optimize Sensor Configuration</atitle><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle><stitle>TNSRE</stitle><addtitle>IEEE Trans Neural Syst Rehabil Eng</addtitle><date>2024-01-01</date><risdate>2024</risdate><volume>32</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1534-4320</issn><issn>1558-0210</issn><eissn>1558-0210</eissn><coden>ITNSB3</coden><abstract>Falls represent a significant cause of injury among the elderly population. Extensive research has been devoted to the utilization of wearable IMU sensors in conjunction with machine learning techniques for fall detection. To address the challenge of acquiring costly training data, this paper presents a novel method that generates a substantial volume of synthetic IMU data with minimal actual fall experiments. First, unmarked 3D motion capture technology is employed to reconstruct human movements. Subsequently, utilizing the biomechanical simulation platform Opensim and forward kinematic methods, an ample amount of training data from various body segments can be custom generated. Synthetic IMU data was then used to train a machine learning model, achieving testing accuracies of 91.99% and 86.62% on two distinct datasets of actual fall-related IMU data. Building upon the simulation framework, this paper further optimized the single IMU attachment position and multiple IMU combinations on fall detection. The proposed method simplifies fall detection data acquisition experiments, provides novel venue for generating low cost synthetic data in scenario where acquiring data for machine learning is challenging and paves the way for customizing machine learning configurations.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>38408008</pmid><doi>10.1109/TNSRE.2024.3370396</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-7824-1179</orcidid><orcidid>https://orcid.org/0000-0003-4639-8301</orcidid><orcidid>https://orcid.org/0000-0003-4632-9170</orcidid><orcidid>https://orcid.org/0000-0003-3645-6301</orcidid><orcidid>https://orcid.org/0009-0000-4064-7042</orcidid><orcidid>https://orcid.org/0000-0003-3193-6269</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1534-4320
ispartof IEEE transactions on neural systems and rehabilitation engineering, 2024-01, Vol.32, p.1-1
issn 1534-4320
1558-0210
1558-0210
language eng
recordid cdi_proquest_journals_2995314548
source MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Aged
Biological system modeling
Biomechanical Phenomena
Biomechanics
Configurations
Convolutional neural networks
Data acquisition
Data augmentation
Data models
Datasets
Fall detection
Human motion
Humans
IMU
Injuries
Kinematics
Learning algorithms
Machine Learning
Motion capture
Movement
Older adults
Older people
Opensim
Synthetic data
Three dimensional motion
Videos
Wearable Electronic Devices
title Synthetic IMU Datasets and Protocols Can Simplify Fall Detection Experiments and Optimize Sensor Configuration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A57%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthetic%20IMU%20Datasets%20and%20Protocols%20Can%20Simplify%20Fall%20Detection%20Experiments%20and%20Optimize%20Sensor%20Configuration&rft.jtitle=IEEE%20transactions%20on%20neural%20systems%20and%20rehabilitation%20engineering&rft.au=Tang,%20Jie&rft.date=2024-01-01&rft.volume=32&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1534-4320&rft.eissn=1558-0210&rft.coden=ITNSB3&rft_id=info:doi/10.1109/TNSRE.2024.3370396&rft_dat=%3Cproquest_doaj_%3E2932435912%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2995314548&rft_id=info:pmid/38408008&rft_ieee_id=10445338&rft_doaj_id=oai_doaj_org_article_92d6e4ceb5234a4695a48566ac0a0d3f&rfr_iscdi=true