Automation Process for Learning Outcome Predictions
This paper presents a comprehensive study on the evaluation of algorithms for automating learning outcome predictions, with a focus on the application of machine learning techniques. We investigate various predictive models (logistic regression, random forest, gaussian naive bayes, k-nearest neighbo...
Gespeichert in:
Veröffentlicht in: | International journal of advanced computer science & applications 2024, Vol.15 (2) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | International journal of advanced computer science & applications |
container_volume | 15 |
creator | Han, Minh-Phuong Doan, Trung-Tung Pham, Minh-Hoan Nguyen, Trung-Tuan |
description | This paper presents a comprehensive study on the evaluation of algorithms for automating learning outcome predictions, with a focus on the application of machine learning techniques. We investigate various predictive models (logistic regression, random forest, gaussian naive bayes, k-nearest neighbors and support vector regression) to assess their efficacy in forecasting student performance in educational settings. Our experimental approach involves the application of these models to predict the outcomes of a specific course, analyzing their accuracy and reliability. We also highlight the significance of an automation process in facilitating the practical application of these predictive models. This study highlights the promise of machine learning in advancing educational assessment and paves the way for further investigations into enhancing the adaptability and inclusivity of algorithms in various educational settings. |
doi_str_mv | 10.14569/IJACSA.2024.0150291 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2992826517</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2992826517</sourcerecordid><originalsourceid>FETCH-LOGICAL-c274t-1c99f2ed550aa4c2c6460d380b76f7ff4830729a77ac36e83f5d1fae500f10d3</originalsourceid><addsrcrecordid>eNotkMtqwzAQRUVpoSHNH3Rh6Nru6G0tjekjxZBCs-hOqLJUHGorlexF_75OnNnMwBzuhYPQPYYCMy7U4_atqj-qggBhBWAOROErtCKYi5xzCdfnu8wxyM9btEnpAPNQRURJV4hW0xh6M3ZhyN5jsC6lzIeYNc7EoRu-s9002tC7-enazp64dIduvPlJbnPZa7R_ftrXr3mze9nWVZNbItmYY6uUJ67lHIxhlljBBLS0hC8pvPSelRQkUUZKY6lwJfW8xd44DuDxDK7RwxJ7jOF3cmnUhzDFYW7URClSEsGxnCm2UDaGlKLz-hi73sQ_jUGfBelFkD4J0hdB9B-bwlge</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2992826517</pqid></control><display><type>article</type><title>Automation Process for Learning Outcome Predictions</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Han, Minh-Phuong ; Doan, Trung-Tung ; Pham, Minh-Hoan ; Nguyen, Trung-Tuan</creator><creatorcontrib>Han, Minh-Phuong ; Doan, Trung-Tung ; Pham, Minh-Hoan ; Nguyen, Trung-Tuan</creatorcontrib><description>This paper presents a comprehensive study on the evaluation of algorithms for automating learning outcome predictions, with a focus on the application of machine learning techniques. We investigate various predictive models (logistic regression, random forest, gaussian naive bayes, k-nearest neighbors and support vector regression) to assess their efficacy in forecasting student performance in educational settings. Our experimental approach involves the application of these models to predict the outcomes of a specific course, analyzing their accuracy and reliability. We also highlight the significance of an automation process in facilitating the practical application of these predictive models. This study highlights the promise of machine learning in advancing educational assessment and paves the way for further investigations into enhancing the adaptability and inclusivity of algorithms in various educational settings.</description><identifier>ISSN: 2158-107X</identifier><identifier>EISSN: 2156-5570</identifier><identifier>DOI: 10.14569/IJACSA.2024.0150291</identifier><language>eng</language><publisher>West Yorkshire: Science and Information (SAI) Organization Limited</publisher><subject>Accuracy ; Algorithms ; Automation ; Computer science ; Data analysis ; Datasets ; Decision making ; Decision trees ; Deep learning ; Education ; Educational objectives ; Machine learning ; Prediction models ; Predictive analytics ; Probability ; Regression analysis ; Success ; Support vector machines</subject><ispartof>International journal of advanced computer science & applications, 2024, Vol.15 (2)</ispartof><rights>2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Han, Minh-Phuong</creatorcontrib><creatorcontrib>Doan, Trung-Tung</creatorcontrib><creatorcontrib>Pham, Minh-Hoan</creatorcontrib><creatorcontrib>Nguyen, Trung-Tuan</creatorcontrib><title>Automation Process for Learning Outcome Predictions</title><title>International journal of advanced computer science & applications</title><description>This paper presents a comprehensive study on the evaluation of algorithms for automating learning outcome predictions, with a focus on the application of machine learning techniques. We investigate various predictive models (logistic regression, random forest, gaussian naive bayes, k-nearest neighbors and support vector regression) to assess their efficacy in forecasting student performance in educational settings. Our experimental approach involves the application of these models to predict the outcomes of a specific course, analyzing their accuracy and reliability. We also highlight the significance of an automation process in facilitating the practical application of these predictive models. This study highlights the promise of machine learning in advancing educational assessment and paves the way for further investigations into enhancing the adaptability and inclusivity of algorithms in various educational settings.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Automation</subject><subject>Computer science</subject><subject>Data analysis</subject><subject>Datasets</subject><subject>Decision making</subject><subject>Decision trees</subject><subject>Deep learning</subject><subject>Education</subject><subject>Educational objectives</subject><subject>Machine learning</subject><subject>Prediction models</subject><subject>Predictive analytics</subject><subject>Probability</subject><subject>Regression analysis</subject><subject>Success</subject><subject>Support vector machines</subject><issn>2158-107X</issn><issn>2156-5570</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNotkMtqwzAQRUVpoSHNH3Rh6Nru6G0tjekjxZBCs-hOqLJUHGorlexF_75OnNnMwBzuhYPQPYYCMy7U4_atqj-qggBhBWAOROErtCKYi5xzCdfnu8wxyM9btEnpAPNQRURJV4hW0xh6M3ZhyN5jsC6lzIeYNc7EoRu-s9002tC7-enazp64dIduvPlJbnPZa7R_ftrXr3mze9nWVZNbItmYY6uUJ67lHIxhlljBBLS0hC8pvPSelRQkUUZKY6lwJfW8xd44DuDxDK7RwxJ7jOF3cmnUhzDFYW7URClSEsGxnCm2UDaGlKLz-hi73sQ_jUGfBelFkD4J0hdB9B-bwlge</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Han, Minh-Phuong</creator><creator>Doan, Trung-Tung</creator><creator>Pham, Minh-Hoan</creator><creator>Nguyen, Trung-Tuan</creator><general>Science and Information (SAI) Organization Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>2024</creationdate><title>Automation Process for Learning Outcome Predictions</title><author>Han, Minh-Phuong ; Doan, Trung-Tung ; Pham, Minh-Hoan ; Nguyen, Trung-Tuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c274t-1c99f2ed550aa4c2c6460d380b76f7ff4830729a77ac36e83f5d1fae500f10d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Automation</topic><topic>Computer science</topic><topic>Data analysis</topic><topic>Datasets</topic><topic>Decision making</topic><topic>Decision trees</topic><topic>Deep learning</topic><topic>Education</topic><topic>Educational objectives</topic><topic>Machine learning</topic><topic>Prediction models</topic><topic>Predictive analytics</topic><topic>Probability</topic><topic>Regression analysis</topic><topic>Success</topic><topic>Support vector machines</topic><toplevel>online_resources</toplevel><creatorcontrib>Han, Minh-Phuong</creatorcontrib><creatorcontrib>Doan, Trung-Tung</creatorcontrib><creatorcontrib>Pham, Minh-Hoan</creatorcontrib><creatorcontrib>Nguyen, Trung-Tuan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of advanced computer science & applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Minh-Phuong</au><au>Doan, Trung-Tung</au><au>Pham, Minh-Hoan</au><au>Nguyen, Trung-Tuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automation Process for Learning Outcome Predictions</atitle><jtitle>International journal of advanced computer science & applications</jtitle><date>2024</date><risdate>2024</risdate><volume>15</volume><issue>2</issue><issn>2158-107X</issn><eissn>2156-5570</eissn><abstract>This paper presents a comprehensive study on the evaluation of algorithms for automating learning outcome predictions, with a focus on the application of machine learning techniques. We investigate various predictive models (logistic regression, random forest, gaussian naive bayes, k-nearest neighbors and support vector regression) to assess their efficacy in forecasting student performance in educational settings. Our experimental approach involves the application of these models to predict the outcomes of a specific course, analyzing their accuracy and reliability. We also highlight the significance of an automation process in facilitating the practical application of these predictive models. This study highlights the promise of machine learning in advancing educational assessment and paves the way for further investigations into enhancing the adaptability and inclusivity of algorithms in various educational settings.</abstract><cop>West Yorkshire</cop><pub>Science and Information (SAI) Organization Limited</pub><doi>10.14569/IJACSA.2024.0150291</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2158-107X |
ispartof | International journal of advanced computer science & applications, 2024, Vol.15 (2) |
issn | 2158-107X 2156-5570 |
language | eng |
recordid | cdi_proquest_journals_2992826517 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Accuracy Algorithms Automation Computer science Data analysis Datasets Decision making Decision trees Deep learning Education Educational objectives Machine learning Prediction models Predictive analytics Probability Regression analysis Success Support vector machines |
title | Automation Process for Learning Outcome Predictions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T20%3A57%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automation%20Process%20for%20Learning%20Outcome%20Predictions&rft.jtitle=International%20journal%20of%20advanced%20computer%20science%20&%20applications&rft.au=Han,%20Minh-Phuong&rft.date=2024&rft.volume=15&rft.issue=2&rft.issn=2158-107X&rft.eissn=2156-5570&rft_id=info:doi/10.14569/IJACSA.2024.0150291&rft_dat=%3Cproquest_cross%3E2992826517%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2992826517&rft_id=info:pmid/&rfr_iscdi=true |