Extremal Edge General Position Sets in Some Graphs

A set of edges X ⊆ E ( G ) of a graph G is an edge general position set if no three edges from X lie on a common shortest path. The edge general position number gp e ( G ) of G is the cardinality of a largest edge general position set in G . Graphs G with gp e ( G ) = | E ( G ) | - 1 and with gp e (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Graphs and combinatorics 2024-04, Vol.40 (2), Article 40
Hauptverfasser: Tian, Jing, Klavžar, Sandi, Tan, Elif
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Graphs and combinatorics
container_volume 40
creator Tian, Jing
Klavžar, Sandi
Tan, Elif
description A set of edges X ⊆ E ( G ) of a graph G is an edge general position set if no three edges from X lie on a common shortest path. The edge general position number gp e ( G ) of G is the cardinality of a largest edge general position set in G . Graphs G with gp e ( G ) = | E ( G ) | - 1 and with gp e ( G ) = 3 are respectively characterized. Sharp upper and lower bounds on gp e ( G ) are proved for block graphs G and exact values are determined for several specific block graphs.
doi_str_mv 10.1007/s00373-024-02770-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2987212964</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2987212964</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-4809e634422c4402bbb572043f1bd1c98f71a099809cdb1e759c186d1909b143</originalsourceid><addsrcrecordid>eNp9kNFLwzAQxoMoWKf_gE8Fn6N3Sdo0jzLmJgwU3Hto03R2rE1NOtD99WZW8M2H4-O433d3fITcItwjgHwIAFxyCkzEkhLo8YwkKHhGM4XinCSgECkgqktyFcIOADIUkBC2-By97cp9uqi3Nl3a3vrYvLrQjq3r0zc7hrSN6ro49eXwHq7JRVPug7351RnZPC028xVdvyyf549ranjORyoKUDbnQjBmhABWVVUmGQjeYFWjUUUjsQSlImbqCq3MlMEir1GBquLrM3I3rR28-zjYMOqdO_g-XtRMFZIhU_mJYhNlvAvB20YPvu1K_6UR9CkaPUWjYzT6Jxp9jCY-mUKE-631f6v_cX0DJztkSA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2987212964</pqid></control><display><type>article</type><title>Extremal Edge General Position Sets in Some Graphs</title><source>SpringerLink Journals</source><creator>Tian, Jing ; Klavžar, Sandi ; Tan, Elif</creator><creatorcontrib>Tian, Jing ; Klavžar, Sandi ; Tan, Elif</creatorcontrib><description>A set of edges X ⊆ E ( G ) of a graph G is an edge general position set if no three edges from X lie on a common shortest path. The edge general position number gp e ( G ) of G is the cardinality of a largest edge general position set in G . Graphs G with gp e ( G ) = | E ( G ) | - 1 and with gp e ( G ) = 3 are respectively characterized. Sharp upper and lower bounds on gp e ( G ) are proved for block graphs G and exact values are determined for several specific block graphs.</description><identifier>ISSN: 0911-0119</identifier><identifier>EISSN: 1435-5914</identifier><identifier>DOI: 10.1007/s00373-024-02770-z</identifier><language>eng</language><publisher>Tokyo: Springer Japan</publisher><subject>Combinatorics ; Engineering Design ; Graph theory ; Graphs ; Lower bounds ; Mathematics ; Mathematics and Statistics ; Original Paper ; Shortest-path problems</subject><ispartof>Graphs and combinatorics, 2024-04, Vol.40 (2), Article 40</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-4809e634422c4402bbb572043f1bd1c98f71a099809cdb1e759c186d1909b143</citedby><cites>FETCH-LOGICAL-c363t-4809e634422c4402bbb572043f1bd1c98f71a099809cdb1e759c186d1909b143</cites><orcidid>0000-0002-1556-4744</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00373-024-02770-z$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00373-024-02770-z$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Tian, Jing</creatorcontrib><creatorcontrib>Klavžar, Sandi</creatorcontrib><creatorcontrib>Tan, Elif</creatorcontrib><title>Extremal Edge General Position Sets in Some Graphs</title><title>Graphs and combinatorics</title><addtitle>Graphs and Combinatorics</addtitle><description>A set of edges X ⊆ E ( G ) of a graph G is an edge general position set if no three edges from X lie on a common shortest path. The edge general position number gp e ( G ) of G is the cardinality of a largest edge general position set in G . Graphs G with gp e ( G ) = | E ( G ) | - 1 and with gp e ( G ) = 3 are respectively characterized. Sharp upper and lower bounds on gp e ( G ) are proved for block graphs G and exact values are determined for several specific block graphs.</description><subject>Combinatorics</subject><subject>Engineering Design</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Lower bounds</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Original Paper</subject><subject>Shortest-path problems</subject><issn>0911-0119</issn><issn>1435-5914</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kNFLwzAQxoMoWKf_gE8Fn6N3Sdo0jzLmJgwU3Hto03R2rE1NOtD99WZW8M2H4-O433d3fITcItwjgHwIAFxyCkzEkhLo8YwkKHhGM4XinCSgECkgqktyFcIOADIUkBC2-By97cp9uqi3Nl3a3vrYvLrQjq3r0zc7hrSN6ro49eXwHq7JRVPug7351RnZPC028xVdvyyf549ranjORyoKUDbnQjBmhABWVVUmGQjeYFWjUUUjsQSlImbqCq3MlMEir1GBquLrM3I3rR28-zjYMOqdO_g-XtRMFZIhU_mJYhNlvAvB20YPvu1K_6UR9CkaPUWjYzT6Jxp9jCY-mUKE-631f6v_cX0DJztkSA</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Tian, Jing</creator><creator>Klavžar, Sandi</creator><creator>Tan, Elif</creator><general>Springer Japan</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1556-4744</orcidid></search><sort><creationdate>20240401</creationdate><title>Extremal Edge General Position Sets in Some Graphs</title><author>Tian, Jing ; Klavžar, Sandi ; Tan, Elif</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-4809e634422c4402bbb572043f1bd1c98f71a099809cdb1e759c186d1909b143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Combinatorics</topic><topic>Engineering Design</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Lower bounds</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Original Paper</topic><topic>Shortest-path problems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tian, Jing</creatorcontrib><creatorcontrib>Klavžar, Sandi</creatorcontrib><creatorcontrib>Tan, Elif</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Graphs and combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tian, Jing</au><au>Klavžar, Sandi</au><au>Tan, Elif</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extremal Edge General Position Sets in Some Graphs</atitle><jtitle>Graphs and combinatorics</jtitle><stitle>Graphs and Combinatorics</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>40</volume><issue>2</issue><artnum>40</artnum><issn>0911-0119</issn><eissn>1435-5914</eissn><abstract>A set of edges X ⊆ E ( G ) of a graph G is an edge general position set if no three edges from X lie on a common shortest path. The edge general position number gp e ( G ) of G is the cardinality of a largest edge general position set in G . Graphs G with gp e ( G ) = | E ( G ) | - 1 and with gp e ( G ) = 3 are respectively characterized. Sharp upper and lower bounds on gp e ( G ) are proved for block graphs G and exact values are determined for several specific block graphs.</abstract><cop>Tokyo</cop><pub>Springer Japan</pub><doi>10.1007/s00373-024-02770-z</doi><orcidid>https://orcid.org/0000-0002-1556-4744</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0911-0119
ispartof Graphs and combinatorics, 2024-04, Vol.40 (2), Article 40
issn 0911-0119
1435-5914
language eng
recordid cdi_proquest_journals_2987212964
source SpringerLink Journals
subjects Combinatorics
Engineering Design
Graph theory
Graphs
Lower bounds
Mathematics
Mathematics and Statistics
Original Paper
Shortest-path problems
title Extremal Edge General Position Sets in Some Graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T02%3A45%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extremal%20Edge%20General%20Position%20Sets%20in%20Some%20Graphs&rft.jtitle=Graphs%20and%20combinatorics&rft.au=Tian,%20Jing&rft.date=2024-04-01&rft.volume=40&rft.issue=2&rft.artnum=40&rft.issn=0911-0119&rft.eissn=1435-5914&rft_id=info:doi/10.1007/s00373-024-02770-z&rft_dat=%3Cproquest_cross%3E2987212964%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2987212964&rft_id=info:pmid/&rfr_iscdi=true