CAB‐Net: Convolutional attention BLSTM network for enhanced leukocyte classification

In recent years, deep learning techniques have been increasingly utilized to automate and reduce human errors in leukocyte classification. However, reliability and accuracy issues remain a challenge. This paper proposes CAB‐Net, an end‐to‐end deep learning‐based model that integrates a convolutional...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of imaging systems and technology 2024-03, Vol.34 (2), p.n/a
Hauptverfasser: Zonyfar, Candra, Kim, Jeong‐Dong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 2
container_start_page
container_title International journal of imaging systems and technology
container_volume 34
creator Zonyfar, Candra
Kim, Jeong‐Dong
description In recent years, deep learning techniques have been increasingly utilized to automate and reduce human errors in leukocyte classification. However, reliability and accuracy issues remain a challenge. This paper proposes CAB‐Net, an end‐to‐end deep learning‐based model that integrates a convolutional neural network with an attention mechanism and BLSTM. The model uses a stack of convolutional and pooling layers to extract initial features from input images, which are then fed into the attention block to generate class‐specific discriminative features and BLSTM employed to model deterministic class correlations between highlighted discriminative features and labels. Experimental results show that CAB‐Net outperforms state‐of‐the‐art methods in term of accuracy, precision, recall, F1‐Score, and AUC‐ROC. In addition, the CAB‐Net model demonstrates good performance even with low‐resolution images. Consequently, CAB‐Net can be considered as the current state‐of‐the‐art prediction model for improving leukocyte classification in clinical environments.
doi_str_mv 10.1002/ima.23065
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2987026455</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2987026455</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2925-84b741c700350fa5a5e74382786ca20e47221c66e53ffca51d9c85d48c02c14a3</originalsourceid><addsrcrecordid>eNp1kLtOwzAUhi0EEqUw8AaWmBjSHjt24rC1EZdKLQwUVsu4tkgb4mInVN14BJ6RJyEhrCznIn3_0dGH0DmBEQGg4-JNjWgMCT9AAwKZiLpyiAYgsizKGE-P0UkIawBCOPABes4n0-_Pr3tTX-HcVR-ubOrCVarEqq5N1c14On9cLnBl6p3zG2ydx6Z6VZU2K1yaZuP0vjZYlyqEwhZadZlTdGRVGczZXx-ip5vrZX4XzR9uZ_lkHmmaUR4J9pIyolOAmINVXHGTsljQVCRaUTAspZToJDE8tlYrTlaZFnzFhAaqCVPxEF30d7fevTcm1HLtGt--HyTNRAo0YZy31GVPae9C8MbKrW9F-b0kIDttst3kr7aWHffsrijN_n9QzhaTPvEDxC9urQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2987026455</pqid></control><display><type>article</type><title>CAB‐Net: Convolutional attention BLSTM network for enhanced leukocyte classification</title><source>Access via Wiley Online Library</source><creator>Zonyfar, Candra ; Kim, Jeong‐Dong</creator><creatorcontrib>Zonyfar, Candra ; Kim, Jeong‐Dong</creatorcontrib><description>In recent years, deep learning techniques have been increasingly utilized to automate and reduce human errors in leukocyte classification. However, reliability and accuracy issues remain a challenge. This paper proposes CAB‐Net, an end‐to‐end deep learning‐based model that integrates a convolutional neural network with an attention mechanism and BLSTM. The model uses a stack of convolutional and pooling layers to extract initial features from input images, which are then fed into the attention block to generate class‐specific discriminative features and BLSTM employed to model deterministic class correlations between highlighted discriminative features and labels. Experimental results show that CAB‐Net outperforms state‐of‐the‐art methods in term of accuracy, precision, recall, F1‐Score, and AUC‐ROC. In addition, the CAB‐Net model demonstrates good performance even with low‐resolution images. Consequently, CAB‐Net can be considered as the current state‐of‐the‐art prediction model for improving leukocyte classification in clinical environments.</description><identifier>ISSN: 0899-9457</identifier><identifier>EISSN: 1098-1098</identifier><identifier>DOI: 10.1002/ima.23065</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Artificial neural networks ; attention mechanism ; BLSTM ; Classification ; CNN ; Deep learning ; Human error ; Leukocytes ; leukocytes classification ; Machine learning ; Prediction models ; white blood cell classification</subject><ispartof>International journal of imaging systems and technology, 2024-03, Vol.34 (2), p.n/a</ispartof><rights>2024 The Authors. published by Wiley Periodicals LLC.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2925-84b741c700350fa5a5e74382786ca20e47221c66e53ffca51d9c85d48c02c14a3</cites><orcidid>0000-0003-0697-882X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fima.23065$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fima.23065$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Zonyfar, Candra</creatorcontrib><creatorcontrib>Kim, Jeong‐Dong</creatorcontrib><title>CAB‐Net: Convolutional attention BLSTM network for enhanced leukocyte classification</title><title>International journal of imaging systems and technology</title><description>In recent years, deep learning techniques have been increasingly utilized to automate and reduce human errors in leukocyte classification. However, reliability and accuracy issues remain a challenge. This paper proposes CAB‐Net, an end‐to‐end deep learning‐based model that integrates a convolutional neural network with an attention mechanism and BLSTM. The model uses a stack of convolutional and pooling layers to extract initial features from input images, which are then fed into the attention block to generate class‐specific discriminative features and BLSTM employed to model deterministic class correlations between highlighted discriminative features and labels. Experimental results show that CAB‐Net outperforms state‐of‐the‐art methods in term of accuracy, precision, recall, F1‐Score, and AUC‐ROC. In addition, the CAB‐Net model demonstrates good performance even with low‐resolution images. Consequently, CAB‐Net can be considered as the current state‐of‐the‐art prediction model for improving leukocyte classification in clinical environments.</description><subject>Artificial neural networks</subject><subject>attention mechanism</subject><subject>BLSTM</subject><subject>Classification</subject><subject>CNN</subject><subject>Deep learning</subject><subject>Human error</subject><subject>Leukocytes</subject><subject>leukocytes classification</subject><subject>Machine learning</subject><subject>Prediction models</subject><subject>white blood cell classification</subject><issn>0899-9457</issn><issn>1098-1098</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp1kLtOwzAUhi0EEqUw8AaWmBjSHjt24rC1EZdKLQwUVsu4tkgb4mInVN14BJ6RJyEhrCznIn3_0dGH0DmBEQGg4-JNjWgMCT9AAwKZiLpyiAYgsizKGE-P0UkIawBCOPABes4n0-_Pr3tTX-HcVR-ubOrCVarEqq5N1c14On9cLnBl6p3zG2ydx6Z6VZU2K1yaZuP0vjZYlyqEwhZadZlTdGRVGczZXx-ip5vrZX4XzR9uZ_lkHmmaUR4J9pIyolOAmINVXHGTsljQVCRaUTAspZToJDE8tlYrTlaZFnzFhAaqCVPxEF30d7fevTcm1HLtGt--HyTNRAo0YZy31GVPae9C8MbKrW9F-b0kIDttst3kr7aWHffsrijN_n9QzhaTPvEDxC9urQ</recordid><startdate>202403</startdate><enddate>202403</enddate><creator>Zonyfar, Candra</creator><creator>Kim, Jeong‐Dong</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0697-882X</orcidid></search><sort><creationdate>202403</creationdate><title>CAB‐Net: Convolutional attention BLSTM network for enhanced leukocyte classification</title><author>Zonyfar, Candra ; Kim, Jeong‐Dong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2925-84b741c700350fa5a5e74382786ca20e47221c66e53ffca51d9c85d48c02c14a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural networks</topic><topic>attention mechanism</topic><topic>BLSTM</topic><topic>Classification</topic><topic>CNN</topic><topic>Deep learning</topic><topic>Human error</topic><topic>Leukocytes</topic><topic>leukocytes classification</topic><topic>Machine learning</topic><topic>Prediction models</topic><topic>white blood cell classification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zonyfar, Candra</creatorcontrib><creatorcontrib>Kim, Jeong‐Dong</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><jtitle>International journal of imaging systems and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zonyfar, Candra</au><au>Kim, Jeong‐Dong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CAB‐Net: Convolutional attention BLSTM network for enhanced leukocyte classification</atitle><jtitle>International journal of imaging systems and technology</jtitle><date>2024-03</date><risdate>2024</risdate><volume>34</volume><issue>2</issue><epage>n/a</epage><issn>0899-9457</issn><eissn>1098-1098</eissn><abstract>In recent years, deep learning techniques have been increasingly utilized to automate and reduce human errors in leukocyte classification. However, reliability and accuracy issues remain a challenge. This paper proposes CAB‐Net, an end‐to‐end deep learning‐based model that integrates a convolutional neural network with an attention mechanism and BLSTM. The model uses a stack of convolutional and pooling layers to extract initial features from input images, which are then fed into the attention block to generate class‐specific discriminative features and BLSTM employed to model deterministic class correlations between highlighted discriminative features and labels. Experimental results show that CAB‐Net outperforms state‐of‐the‐art methods in term of accuracy, precision, recall, F1‐Score, and AUC‐ROC. In addition, the CAB‐Net model demonstrates good performance even with low‐resolution images. Consequently, CAB‐Net can be considered as the current state‐of‐the‐art prediction model for improving leukocyte classification in clinical environments.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/ima.23065</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-0697-882X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0899-9457
ispartof International journal of imaging systems and technology, 2024-03, Vol.34 (2), p.n/a
issn 0899-9457
1098-1098
language eng
recordid cdi_proquest_journals_2987026455
source Access via Wiley Online Library
subjects Artificial neural networks
attention mechanism
BLSTM
Classification
CNN
Deep learning
Human error
Leukocytes
leukocytes classification
Machine learning
Prediction models
white blood cell classification
title CAB‐Net: Convolutional attention BLSTM network for enhanced leukocyte classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A03%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CAB%E2%80%90Net:%20Convolutional%20attention%20BLSTM%20network%20for%20enhanced%20leukocyte%20classification&rft.jtitle=International%20journal%20of%20imaging%20systems%20and%20technology&rft.au=Zonyfar,%20Candra&rft.date=2024-03&rft.volume=34&rft.issue=2&rft.epage=n/a&rft.issn=0899-9457&rft.eissn=1098-1098&rft_id=info:doi/10.1002/ima.23065&rft_dat=%3Cproquest_cross%3E2987026455%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2987026455&rft_id=info:pmid/&rfr_iscdi=true