A customized ConvNeXt‐XL network with fusion of deep and handcrafted features for colposcopy image classification

Cervical cancer is the second most frequent cancer among women of all age groups worldwide. It occurs due to human papillomavirus. In the premature stages, the symptoms will not be predominant until they reach the final stage of cancer. Detection and classification of cervical cancer always demand g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of imaging systems and technology 2024-03, Vol.34 (2), p.n/a
Hauptverfasser: Natarajan, Thendral, Devan, Lakshmi, Palayanoor Seethapathy, Ramaprabha, Balakrishnan, Senthil Kumar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 2
container_start_page
container_title International journal of imaging systems and technology
container_volume 34
creator Natarajan, Thendral
Devan, Lakshmi
Palayanoor Seethapathy, Ramaprabha
Balakrishnan, Senthil Kumar
description Cervical cancer is the second most frequent cancer among women of all age groups worldwide. It occurs due to human papillomavirus. In the premature stages, the symptoms will not be predominant until they reach the final stage of cancer. Detection and classification of cervical cancer always demand gynecologists with the necessary skills and experience. The goal of the proposed work is to develop a deep learning framework to facilitate the automated classification of cervical cancer using colposcopy images. The following Deep Convolutional Neural Network (DCNN) models are proposed to detect cervical cancer and classify cervix‐type images. (i) the pre‐trained DCNNs, namely VGG16, ResNet50, InceptionV3, InceptionResNetV2, and ConvNeXtXLarge (ConvNeXt‐XL) using Softmax classifier based on deep features; (ii) the ConvNeXt‐XL model with classification using Support Vector Machine (SVM), K Nearest Neighbor (KNN) and Decision Tree (DT) based on deep features; (iii) a customized ConvNeXt‐XL network to enhance the classification accuracy using serially concatenated handcrafted and deep features. The research experiment was carried out separately using two datasets: the Cervix‐Type dataset (Type 1, Type 2, and Type 3) and the Real Time Cervical dataset (Normal and Abnormal). The simulation outcome confirms that the customized ConvNeXt‐XL helped to improve the classification accuracy with the Cervix‐Type dataset (>97%) and Real Time Cervical dataset (>98%).
doi_str_mv 10.1002/ima.23036
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2987026454</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2987026454</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2576-48a9d181f52489dfc047766e3db74379f29969f089f4853a9a95406b1524e19c3</originalsourceid><addsrcrecordid>eNp1kE1OwzAQhS0EEqWw4AaWWLFIayd2Ei-rip9KBTYgdWe5jk1d0jjYTquy4gickZPgErZs3mikb2bePAAuMRphhNKx2YhRmqEsPwIDjFiZHOQYDFDJWMIILU7BmfdrhDCmiA6An0DZ-WA35kNVcGqb7aNahO_Pr8UcNirsrHuDOxNWUHfe2AZaDSulWiiaCq6iSCd0iJNaidA55aG2Dkpbt9ZL2-5h9POqoKyF90YbKUJccg5OtKi9uvirQ_Bye_M8vU_mT3ez6WSeyJQWeUJKwSpcYk1TUrJKS0SKIs9VVi0LkhVMp4zlTMfPNClpJphglKB8iSOvMJPZEFz1e1tn3zvlA1_bzjXxJE9ZWaA0J5RE6rqnpLPeO6V566Jrt-cY8UOmPHb8N9PIjnt2Z2q1_x_ks4dJP_EDjMh5Zg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2987026454</pqid></control><display><type>article</type><title>A customized ConvNeXt‐XL network with fusion of deep and handcrafted features for colposcopy image classification</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Natarajan, Thendral ; Devan, Lakshmi ; Palayanoor Seethapathy, Ramaprabha ; Balakrishnan, Senthil Kumar</creator><creatorcontrib>Natarajan, Thendral ; Devan, Lakshmi ; Palayanoor Seethapathy, Ramaprabha ; Balakrishnan, Senthil Kumar</creatorcontrib><description>Cervical cancer is the second most frequent cancer among women of all age groups worldwide. It occurs due to human papillomavirus. In the premature stages, the symptoms will not be predominant until they reach the final stage of cancer. Detection and classification of cervical cancer always demand gynecologists with the necessary skills and experience. The goal of the proposed work is to develop a deep learning framework to facilitate the automated classification of cervical cancer using colposcopy images. The following Deep Convolutional Neural Network (DCNN) models are proposed to detect cervical cancer and classify cervix‐type images. (i) the pre‐trained DCNNs, namely VGG16, ResNet50, InceptionV3, InceptionResNetV2, and ConvNeXtXLarge (ConvNeXt‐XL) using Softmax classifier based on deep features; (ii) the ConvNeXt‐XL model with classification using Support Vector Machine (SVM), K Nearest Neighbor (KNN) and Decision Tree (DT) based on deep features; (iii) a customized ConvNeXt‐XL network to enhance the classification accuracy using serially concatenated handcrafted and deep features. The research experiment was carried out separately using two datasets: the Cervix‐Type dataset (Type 1, Type 2, and Type 3) and the Real Time Cervical dataset (Normal and Abnormal). The simulation outcome confirms that the customized ConvNeXt‐XL helped to improve the classification accuracy with the Cervix‐Type dataset (&gt;97%) and Real Time Cervical dataset (&gt;98%).</description><identifier>ISSN: 0899-9457</identifier><identifier>EISSN: 1098-1098</identifier><identifier>DOI: 10.1002/ima.23036</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Accuracy ; Artificial neural networks ; Cancer ; Cervical cancer ; Cervix ; Classification ; colposcopy ; ConvNeXt‐XL ; Customization ; Datasets ; Decision trees ; deep convolutional neural networks ; feature concatenation ; Human papillomavirus ; Image classification ; Machine learning ; Real time ; Support vector machines</subject><ispartof>International journal of imaging systems and technology, 2024-03, Vol.34 (2), p.n/a</ispartof><rights>2024 Wiley Periodicals LLC.</rights><rights>2024 Wiley Periodicals, LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2576-48a9d181f52489dfc047766e3db74379f29969f089f4853a9a95406b1524e19c3</cites><orcidid>0000-0001-6577-3707 ; 0000-0003-1160-8604 ; 0000-0001-7911-6564 ; 0000-0003-0076-5137</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fima.23036$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fima.23036$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Natarajan, Thendral</creatorcontrib><creatorcontrib>Devan, Lakshmi</creatorcontrib><creatorcontrib>Palayanoor Seethapathy, Ramaprabha</creatorcontrib><creatorcontrib>Balakrishnan, Senthil Kumar</creatorcontrib><title>A customized ConvNeXt‐XL network with fusion of deep and handcrafted features for colposcopy image classification</title><title>International journal of imaging systems and technology</title><description>Cervical cancer is the second most frequent cancer among women of all age groups worldwide. It occurs due to human papillomavirus. In the premature stages, the symptoms will not be predominant until they reach the final stage of cancer. Detection and classification of cervical cancer always demand gynecologists with the necessary skills and experience. The goal of the proposed work is to develop a deep learning framework to facilitate the automated classification of cervical cancer using colposcopy images. The following Deep Convolutional Neural Network (DCNN) models are proposed to detect cervical cancer and classify cervix‐type images. (i) the pre‐trained DCNNs, namely VGG16, ResNet50, InceptionV3, InceptionResNetV2, and ConvNeXtXLarge (ConvNeXt‐XL) using Softmax classifier based on deep features; (ii) the ConvNeXt‐XL model with classification using Support Vector Machine (SVM), K Nearest Neighbor (KNN) and Decision Tree (DT) based on deep features; (iii) a customized ConvNeXt‐XL network to enhance the classification accuracy using serially concatenated handcrafted and deep features. The research experiment was carried out separately using two datasets: the Cervix‐Type dataset (Type 1, Type 2, and Type 3) and the Real Time Cervical dataset (Normal and Abnormal). The simulation outcome confirms that the customized ConvNeXt‐XL helped to improve the classification accuracy with the Cervix‐Type dataset (&gt;97%) and Real Time Cervical dataset (&gt;98%).</description><subject>Accuracy</subject><subject>Artificial neural networks</subject><subject>Cancer</subject><subject>Cervical cancer</subject><subject>Cervix</subject><subject>Classification</subject><subject>colposcopy</subject><subject>ConvNeXt‐XL</subject><subject>Customization</subject><subject>Datasets</subject><subject>Decision trees</subject><subject>deep convolutional neural networks</subject><subject>feature concatenation</subject><subject>Human papillomavirus</subject><subject>Image classification</subject><subject>Machine learning</subject><subject>Real time</subject><subject>Support vector machines</subject><issn>0899-9457</issn><issn>1098-1098</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAQhS0EEqWw4AaWWLFIayd2Ei-rip9KBTYgdWe5jk1d0jjYTquy4gickZPgErZs3mikb2bePAAuMRphhNKx2YhRmqEsPwIDjFiZHOQYDFDJWMIILU7BmfdrhDCmiA6An0DZ-WA35kNVcGqb7aNahO_Pr8UcNirsrHuDOxNWUHfe2AZaDSulWiiaCq6iSCd0iJNaidA55aG2Dkpbt9ZL2-5h9POqoKyF90YbKUJccg5OtKi9uvirQ_Bye_M8vU_mT3ez6WSeyJQWeUJKwSpcYk1TUrJKS0SKIs9VVi0LkhVMp4zlTMfPNClpJphglKB8iSOvMJPZEFz1e1tn3zvlA1_bzjXxJE9ZWaA0J5RE6rqnpLPeO6V566Jrt-cY8UOmPHb8N9PIjnt2Z2q1_x_ks4dJP_EDjMh5Zg</recordid><startdate>202403</startdate><enddate>202403</enddate><creator>Natarajan, Thendral</creator><creator>Devan, Lakshmi</creator><creator>Palayanoor Seethapathy, Ramaprabha</creator><creator>Balakrishnan, Senthil Kumar</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6577-3707</orcidid><orcidid>https://orcid.org/0000-0003-1160-8604</orcidid><orcidid>https://orcid.org/0000-0001-7911-6564</orcidid><orcidid>https://orcid.org/0000-0003-0076-5137</orcidid></search><sort><creationdate>202403</creationdate><title>A customized ConvNeXt‐XL network with fusion of deep and handcrafted features for colposcopy image classification</title><author>Natarajan, Thendral ; Devan, Lakshmi ; Palayanoor Seethapathy, Ramaprabha ; Balakrishnan, Senthil Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2576-48a9d181f52489dfc047766e3db74379f29969f089f4853a9a95406b1524e19c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Artificial neural networks</topic><topic>Cancer</topic><topic>Cervical cancer</topic><topic>Cervix</topic><topic>Classification</topic><topic>colposcopy</topic><topic>ConvNeXt‐XL</topic><topic>Customization</topic><topic>Datasets</topic><topic>Decision trees</topic><topic>deep convolutional neural networks</topic><topic>feature concatenation</topic><topic>Human papillomavirus</topic><topic>Image classification</topic><topic>Machine learning</topic><topic>Real time</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Natarajan, Thendral</creatorcontrib><creatorcontrib>Devan, Lakshmi</creatorcontrib><creatorcontrib>Palayanoor Seethapathy, Ramaprabha</creatorcontrib><creatorcontrib>Balakrishnan, Senthil Kumar</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of imaging systems and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Natarajan, Thendral</au><au>Devan, Lakshmi</au><au>Palayanoor Seethapathy, Ramaprabha</au><au>Balakrishnan, Senthil Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A customized ConvNeXt‐XL network with fusion of deep and handcrafted features for colposcopy image classification</atitle><jtitle>International journal of imaging systems and technology</jtitle><date>2024-03</date><risdate>2024</risdate><volume>34</volume><issue>2</issue><epage>n/a</epage><issn>0899-9457</issn><eissn>1098-1098</eissn><abstract>Cervical cancer is the second most frequent cancer among women of all age groups worldwide. It occurs due to human papillomavirus. In the premature stages, the symptoms will not be predominant until they reach the final stage of cancer. Detection and classification of cervical cancer always demand gynecologists with the necessary skills and experience. The goal of the proposed work is to develop a deep learning framework to facilitate the automated classification of cervical cancer using colposcopy images. The following Deep Convolutional Neural Network (DCNN) models are proposed to detect cervical cancer and classify cervix‐type images. (i) the pre‐trained DCNNs, namely VGG16, ResNet50, InceptionV3, InceptionResNetV2, and ConvNeXtXLarge (ConvNeXt‐XL) using Softmax classifier based on deep features; (ii) the ConvNeXt‐XL model with classification using Support Vector Machine (SVM), K Nearest Neighbor (KNN) and Decision Tree (DT) based on deep features; (iii) a customized ConvNeXt‐XL network to enhance the classification accuracy using serially concatenated handcrafted and deep features. The research experiment was carried out separately using two datasets: the Cervix‐Type dataset (Type 1, Type 2, and Type 3) and the Real Time Cervical dataset (Normal and Abnormal). The simulation outcome confirms that the customized ConvNeXt‐XL helped to improve the classification accuracy with the Cervix‐Type dataset (&gt;97%) and Real Time Cervical dataset (&gt;98%).</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/ima.23036</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-6577-3707</orcidid><orcidid>https://orcid.org/0000-0003-1160-8604</orcidid><orcidid>https://orcid.org/0000-0001-7911-6564</orcidid><orcidid>https://orcid.org/0000-0003-0076-5137</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0899-9457
ispartof International journal of imaging systems and technology, 2024-03, Vol.34 (2), p.n/a
issn 0899-9457
1098-1098
language eng
recordid cdi_proquest_journals_2987026454
source Wiley Online Library Journals Frontfile Complete
subjects Accuracy
Artificial neural networks
Cancer
Cervical cancer
Cervix
Classification
colposcopy
ConvNeXt‐XL
Customization
Datasets
Decision trees
deep convolutional neural networks
feature concatenation
Human papillomavirus
Image classification
Machine learning
Real time
Support vector machines
title A customized ConvNeXt‐XL network with fusion of deep and handcrafted features for colposcopy image classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T02%3A42%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20customized%20ConvNeXt%E2%80%90XL%20network%20with%20fusion%20of%20deep%20and%20handcrafted%20features%20for%20colposcopy%20image%20classification&rft.jtitle=International%20journal%20of%20imaging%20systems%20and%20technology&rft.au=Natarajan,%20Thendral&rft.date=2024-03&rft.volume=34&rft.issue=2&rft.epage=n/a&rft.issn=0899-9457&rft.eissn=1098-1098&rft_id=info:doi/10.1002/ima.23036&rft_dat=%3Cproquest_cross%3E2987026454%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2987026454&rft_id=info:pmid/&rfr_iscdi=true