Composite collaborative acoustic metamaterials: Isolating shaft vibration of guide roller in printing machine

During the operation of the unit type gravure press, the violent mechanical vibration generated by the guide roller will seriously affect the stability of the unit operation, and causing transmission faults such as wrinkle, offset, scratch or fracture, and reducing the printing accuracy. To this pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of vibration and control 2024-03, Vol.30 (5-6), p.1214-1226
Hauptverfasser: Lei, Xiaofei, Wu, Hengliang, Zha, Zhaoshuan, Xu, Zhuofei, Hou, Heping, Wu, Nan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1226
container_issue 5-6
container_start_page 1214
container_title Journal of vibration and control
container_volume 30
creator Lei, Xiaofei
Wu, Hengliang
Zha, Zhaoshuan
Xu, Zhuofei
Hou, Heping
Wu, Nan
description During the operation of the unit type gravure press, the violent mechanical vibration generated by the guide roller will seriously affect the stability of the unit operation, and causing transmission faults such as wrinkle, offset, scratch or fracture, and reducing the printing accuracy. To this problem, a novel multi-approach composite collaborative vibration isolator which combines the local resonator and multi-layer composite structure is proposed to solve the problems of vibration suppression in the single frequency and vibration energy dissipation in the full frequency band, respectively, and the theoretical model on the proposed isolator is established basing on dynamic stiffness method. For demonstrating isolation performance, the regularized normalized modal displacement, power loss density, elastic strain energy density, total kinetic energy, and vibration transmission ratio can be discussed. The results show that the composite vibration isolator has a wide vibration isolation band, and the vibration wave has two attenuation bands within 0–2000 Hz. The first attenuation band is 188–224 Hz and the width is 36 Hz; the second attenuation band is greater than 328 Hz. When the band of the vibration isolator is above 700 Hz, the vibration transmission ratio shows a monotonous decreasing trend. Furthermore, an experimental platform for the vibration isolation device of the guide roller is established to verify the vibration isolation performance. When the drive motor frequency is 20 Hz, the composite vibration isolator has the best vibration isolation effect. At the same time, the vibration isolation effect gradually decreases with the increase of the guide roller speed, but it still has preferable vibration isolation performance under various working conditions.
doi_str_mv 10.1177/10775463231158193
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2987011661</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_10775463231158193</sage_id><sourcerecordid>2987011661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c264t-3b22e0c4e59ce419765ad2a9b75aa5306da7b4bcc41df7e77e3d9e673ab5f1033</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWD9-gLeA562ZTXbT9SbFj0LBi56X2exsm9Ld1CRb8N-bWsGDeMpAnued4WXsBsQUQOs7EFoXqpS5BChmUMkTNgGtIMurWXma5vSfHYBzdhHCRgihFIgJ6-eu37lgI3HjtltsnMdo98TRuDFEa3hPEXuM5C1uwz1fBLdNxLDiYY1d5HvbHAw3cNfx1Whb4j4Fked24Dtvh2-2R7O2A12xsy6l0PXPe8nenx7f5i_Z8vV5MX9YZiYvVcxkk-ckjKKiMqSg0mWBbY5VowvEQoqyRd2oxhgFbadJa5JtRaWW2BQdCCkv2e0xd-fdx0gh1hs3-iGtrFMfWgCUJSQKjpTxLgRPXZ3u7dF_1iDqQ6v1n1aTMz06AVf0m_q_8AX1aHld</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2987011661</pqid></control><display><type>article</type><title>Composite collaborative acoustic metamaterials: Isolating shaft vibration of guide roller in printing machine</title><source>Access via SAGE</source><creator>Lei, Xiaofei ; Wu, Hengliang ; Zha, Zhaoshuan ; Xu, Zhuofei ; Hou, Heping ; Wu, Nan</creator><creatorcontrib>Lei, Xiaofei ; Wu, Hengliang ; Zha, Zhaoshuan ; Xu, Zhuofei ; Hou, Heping ; Wu, Nan</creatorcontrib><description>During the operation of the unit type gravure press, the violent mechanical vibration generated by the guide roller will seriously affect the stability of the unit operation, and causing transmission faults such as wrinkle, offset, scratch or fracture, and reducing the printing accuracy. To this problem, a novel multi-approach composite collaborative vibration isolator which combines the local resonator and multi-layer composite structure is proposed to solve the problems of vibration suppression in the single frequency and vibration energy dissipation in the full frequency band, respectively, and the theoretical model on the proposed isolator is established basing on dynamic stiffness method. For demonstrating isolation performance, the regularized normalized modal displacement, power loss density, elastic strain energy density, total kinetic energy, and vibration transmission ratio can be discussed. The results show that the composite vibration isolator has a wide vibration isolation band, and the vibration wave has two attenuation bands within 0–2000 Hz. The first attenuation band is 188–224 Hz and the width is 36 Hz; the second attenuation band is greater than 328 Hz. When the band of the vibration isolator is above 700 Hz, the vibration transmission ratio shows a monotonous decreasing trend. Furthermore, an experimental platform for the vibration isolation device of the guide roller is established to verify the vibration isolation performance. When the drive motor frequency is 20 Hz, the composite vibration isolator has the best vibration isolation effect. At the same time, the vibration isolation effect gradually decreases with the increase of the guide roller speed, but it still has preferable vibration isolation performance under various working conditions.</description><identifier>ISSN: 1077-5463</identifier><identifier>EISSN: 1741-2986</identifier><identifier>DOI: 10.1177/10775463231158193</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Collaboration ; Composite structures ; Energy dissipation ; Frequencies ; Kinetic energy ; Metamaterials ; Multilayers ; Strain energy ; Vibration ; Vibration control ; Vibration isolators ; Wave attenuation ; Working conditions</subject><ispartof>Journal of vibration and control, 2024-03, Vol.30 (5-6), p.1214-1226</ispartof><rights>The Author(s) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c264t-3b22e0c4e59ce419765ad2a9b75aa5306da7b4bcc41df7e77e3d9e673ab5f1033</cites><orcidid>0000-0002-6884-1768 ; 0000-0001-7607-6907</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/10775463231158193$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/10775463231158193$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21819,27924,27925,43621,43622</link.rule.ids></links><search><creatorcontrib>Lei, Xiaofei</creatorcontrib><creatorcontrib>Wu, Hengliang</creatorcontrib><creatorcontrib>Zha, Zhaoshuan</creatorcontrib><creatorcontrib>Xu, Zhuofei</creatorcontrib><creatorcontrib>Hou, Heping</creatorcontrib><creatorcontrib>Wu, Nan</creatorcontrib><title>Composite collaborative acoustic metamaterials: Isolating shaft vibration of guide roller in printing machine</title><title>Journal of vibration and control</title><description>During the operation of the unit type gravure press, the violent mechanical vibration generated by the guide roller will seriously affect the stability of the unit operation, and causing transmission faults such as wrinkle, offset, scratch or fracture, and reducing the printing accuracy. To this problem, a novel multi-approach composite collaborative vibration isolator which combines the local resonator and multi-layer composite structure is proposed to solve the problems of vibration suppression in the single frequency and vibration energy dissipation in the full frequency band, respectively, and the theoretical model on the proposed isolator is established basing on dynamic stiffness method. For demonstrating isolation performance, the regularized normalized modal displacement, power loss density, elastic strain energy density, total kinetic energy, and vibration transmission ratio can be discussed. The results show that the composite vibration isolator has a wide vibration isolation band, and the vibration wave has two attenuation bands within 0–2000 Hz. The first attenuation band is 188–224 Hz and the width is 36 Hz; the second attenuation band is greater than 328 Hz. When the band of the vibration isolator is above 700 Hz, the vibration transmission ratio shows a monotonous decreasing trend. Furthermore, an experimental platform for the vibration isolation device of the guide roller is established to verify the vibration isolation performance. When the drive motor frequency is 20 Hz, the composite vibration isolator has the best vibration isolation effect. At the same time, the vibration isolation effect gradually decreases with the increase of the guide roller speed, but it still has preferable vibration isolation performance under various working conditions.</description><subject>Collaboration</subject><subject>Composite structures</subject><subject>Energy dissipation</subject><subject>Frequencies</subject><subject>Kinetic energy</subject><subject>Metamaterials</subject><subject>Multilayers</subject><subject>Strain energy</subject><subject>Vibration</subject><subject>Vibration control</subject><subject>Vibration isolators</subject><subject>Wave attenuation</subject><subject>Working conditions</subject><issn>1077-5463</issn><issn>1741-2986</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWD9-gLeA562ZTXbT9SbFj0LBi56X2exsm9Ld1CRb8N-bWsGDeMpAnued4WXsBsQUQOs7EFoXqpS5BChmUMkTNgGtIMurWXma5vSfHYBzdhHCRgihFIgJ6-eu37lgI3HjtltsnMdo98TRuDFEa3hPEXuM5C1uwz1fBLdNxLDiYY1d5HvbHAw3cNfx1Whb4j4Fked24Dtvh2-2R7O2A12xsy6l0PXPe8nenx7f5i_Z8vV5MX9YZiYvVcxkk-ckjKKiMqSg0mWBbY5VowvEQoqyRd2oxhgFbadJa5JtRaWW2BQdCCkv2e0xd-fdx0gh1hs3-iGtrFMfWgCUJSQKjpTxLgRPXZ3u7dF_1iDqQ6v1n1aTMz06AVf0m_q_8AX1aHld</recordid><startdate>202403</startdate><enddate>202403</enddate><creator>Lei, Xiaofei</creator><creator>Wu, Hengliang</creator><creator>Zha, Zhaoshuan</creator><creator>Xu, Zhuofei</creator><creator>Hou, Heping</creator><creator>Wu, Nan</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6884-1768</orcidid><orcidid>https://orcid.org/0000-0001-7607-6907</orcidid></search><sort><creationdate>202403</creationdate><title>Composite collaborative acoustic metamaterials: Isolating shaft vibration of guide roller in printing machine</title><author>Lei, Xiaofei ; Wu, Hengliang ; Zha, Zhaoshuan ; Xu, Zhuofei ; Hou, Heping ; Wu, Nan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c264t-3b22e0c4e59ce419765ad2a9b75aa5306da7b4bcc41df7e77e3d9e673ab5f1033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Collaboration</topic><topic>Composite structures</topic><topic>Energy dissipation</topic><topic>Frequencies</topic><topic>Kinetic energy</topic><topic>Metamaterials</topic><topic>Multilayers</topic><topic>Strain energy</topic><topic>Vibration</topic><topic>Vibration control</topic><topic>Vibration isolators</topic><topic>Wave attenuation</topic><topic>Working conditions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lei, Xiaofei</creatorcontrib><creatorcontrib>Wu, Hengliang</creatorcontrib><creatorcontrib>Zha, Zhaoshuan</creatorcontrib><creatorcontrib>Xu, Zhuofei</creatorcontrib><creatorcontrib>Hou, Heping</creatorcontrib><creatorcontrib>Wu, Nan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of vibration and control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lei, Xiaofei</au><au>Wu, Hengliang</au><au>Zha, Zhaoshuan</au><au>Xu, Zhuofei</au><au>Hou, Heping</au><au>Wu, Nan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Composite collaborative acoustic metamaterials: Isolating shaft vibration of guide roller in printing machine</atitle><jtitle>Journal of vibration and control</jtitle><date>2024-03</date><risdate>2024</risdate><volume>30</volume><issue>5-6</issue><spage>1214</spage><epage>1226</epage><pages>1214-1226</pages><issn>1077-5463</issn><eissn>1741-2986</eissn><abstract>During the operation of the unit type gravure press, the violent mechanical vibration generated by the guide roller will seriously affect the stability of the unit operation, and causing transmission faults such as wrinkle, offset, scratch or fracture, and reducing the printing accuracy. To this problem, a novel multi-approach composite collaborative vibration isolator which combines the local resonator and multi-layer composite structure is proposed to solve the problems of vibration suppression in the single frequency and vibration energy dissipation in the full frequency band, respectively, and the theoretical model on the proposed isolator is established basing on dynamic stiffness method. For demonstrating isolation performance, the regularized normalized modal displacement, power loss density, elastic strain energy density, total kinetic energy, and vibration transmission ratio can be discussed. The results show that the composite vibration isolator has a wide vibration isolation band, and the vibration wave has two attenuation bands within 0–2000 Hz. The first attenuation band is 188–224 Hz and the width is 36 Hz; the second attenuation band is greater than 328 Hz. When the band of the vibration isolator is above 700 Hz, the vibration transmission ratio shows a monotonous decreasing trend. Furthermore, an experimental platform for the vibration isolation device of the guide roller is established to verify the vibration isolation performance. When the drive motor frequency is 20 Hz, the composite vibration isolator has the best vibration isolation effect. At the same time, the vibration isolation effect gradually decreases with the increase of the guide roller speed, but it still has preferable vibration isolation performance under various working conditions.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/10775463231158193</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-6884-1768</orcidid><orcidid>https://orcid.org/0000-0001-7607-6907</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1077-5463
ispartof Journal of vibration and control, 2024-03, Vol.30 (5-6), p.1214-1226
issn 1077-5463
1741-2986
language eng
recordid cdi_proquest_journals_2987011661
source Access via SAGE
subjects Collaboration
Composite structures
Energy dissipation
Frequencies
Kinetic energy
Metamaterials
Multilayers
Strain energy
Vibration
Vibration control
Vibration isolators
Wave attenuation
Working conditions
title Composite collaborative acoustic metamaterials: Isolating shaft vibration of guide roller in printing machine
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T23%3A59%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Composite%20collaborative%20acoustic%20metamaterials:%20Isolating%20shaft%20vibration%20of%20guide%20roller%20in%20printing%20machine&rft.jtitle=Journal%20of%20vibration%20and%20control&rft.au=Lei,%20Xiaofei&rft.date=2024-03&rft.volume=30&rft.issue=5-6&rft.spage=1214&rft.epage=1226&rft.pages=1214-1226&rft.issn=1077-5463&rft.eissn=1741-2986&rft_id=info:doi/10.1177/10775463231158193&rft_dat=%3Cproquest_cross%3E2987011661%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2987011661&rft_id=info:pmid/&rft_sage_id=10.1177_10775463231158193&rfr_iscdi=true