Linear Shafarevich Conjecture in positive characteristic, Hyperbolicity and Applications
Given a complex quasi-projective normal variety \(X\) and a linear representation \(\varrho:\pi_1(X)\to {\rm GL}_{N}(K)\) with \(K\) any field of positive characteristic, we mainly establish the following results: 1. the construction of the Shafarevich morphism \({\rm sh}_\varrho:X\to {\rm Sh}_\varr...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-03 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Deng, Ya Yamanoi, Katsutoshi |
description | Given a complex quasi-projective normal variety \(X\) and a linear representation \(\varrho:\pi_1(X)\to {\rm GL}_{N}(K)\) with \(K\) any field of positive characteristic, we mainly establish the following results: 1. the construction of the Shafarevich morphism \({\rm sh}_\varrho:X\to {\rm Sh}_\varrho(X)\) associated with \(\varrho\). 2. In cases where \(X\) is projective, \(\varrho\) is faithful and the \(\Gamma\)-dimension of \(X\) is at most two (e.g. \(\dim X=2\)), we prove that the Shafarevich conjecture holds for \(X\). 3. In cases where \(\varrho\) is big, we prove that the Green-Griffiths-Lang conjecture holds for \(X\). 4. When \(\varrho\) is big and the Zariski closure of \(\varrho(\pi_1(X))\) is a semisimple algebraic group, we prove that \(X\) is pseudo Picard hyperbolic, and strongly of log general type. 5. If \(X\) is special or \(h\)-special, then \(\varrho(\pi_1(X))\) is virtually abelian. We also prove Claudon-H\"oring-Kollár's conjecture for complex projective manifolds with linear fundamental groups of any characteristic. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2986602072</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2986602072</sourcerecordid><originalsourceid>FETCH-proquest_journals_29866020723</originalsourceid><addsrcrecordid>eNqNirsKwjAUQIMgWLT_EHC1EFP7cJSidHDTwa3EeEtvKUm8SQv9ex38AKfD4ZwFi2Sa7pPyIOWKxd73QgiZFzLL0og9rmhAEb91qlUEE-qOV9b0oMNIwNFwZz0GnIDrTpHSAQh9QL3j9eyAnnZAjWHmyrz4ybmvqYDW-A1btmrwEP-4ZtvL-V7ViSP7HsGHprcjmW9q5LHMcyFFIdP_rg8Bm0LC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2986602072</pqid></control><display><type>article</type><title>Linear Shafarevich Conjecture in positive characteristic, Hyperbolicity and Applications</title><source>Free E- Journals</source><creator>Deng, Ya ; Yamanoi, Katsutoshi</creator><creatorcontrib>Deng, Ya ; Yamanoi, Katsutoshi</creatorcontrib><description>Given a complex quasi-projective normal variety \(X\) and a linear representation \(\varrho:\pi_1(X)\to {\rm GL}_{N}(K)\) with \(K\) any field of positive characteristic, we mainly establish the following results: 1. the construction of the Shafarevich morphism \({\rm sh}_\varrho:X\to {\rm Sh}_\varrho(X)\) associated with \(\varrho\). 2. In cases where \(X\) is projective, \(\varrho\) is faithful and the \(\Gamma\)-dimension of \(X\) is at most two (e.g. \(\dim X=2\)), we prove that the Shafarevich conjecture holds for \(X\). 3. In cases where \(\varrho\) is big, we prove that the Green-Griffiths-Lang conjecture holds for \(X\). 4. When \(\varrho\) is big and the Zariski closure of \(\varrho(\pi_1(X))\) is a semisimple algebraic group, we prove that \(X\) is pseudo Picard hyperbolic, and strongly of log general type. 5. If \(X\) is special or \(h\)-special, then \(\varrho(\pi_1(X))\) is virtually abelian. We also prove Claudon-H\"oring-Kollár's conjecture for complex projective manifolds with linear fundamental groups of any characteristic.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><ispartof>arXiv.org, 2024-03</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Deng, Ya</creatorcontrib><creatorcontrib>Yamanoi, Katsutoshi</creatorcontrib><title>Linear Shafarevich Conjecture in positive characteristic, Hyperbolicity and Applications</title><title>arXiv.org</title><description>Given a complex quasi-projective normal variety \(X\) and a linear representation \(\varrho:\pi_1(X)\to {\rm GL}_{N}(K)\) with \(K\) any field of positive characteristic, we mainly establish the following results: 1. the construction of the Shafarevich morphism \({\rm sh}_\varrho:X\to {\rm Sh}_\varrho(X)\) associated with \(\varrho\). 2. In cases where \(X\) is projective, \(\varrho\) is faithful and the \(\Gamma\)-dimension of \(X\) is at most two (e.g. \(\dim X=2\)), we prove that the Shafarevich conjecture holds for \(X\). 3. In cases where \(\varrho\) is big, we prove that the Green-Griffiths-Lang conjecture holds for \(X\). 4. When \(\varrho\) is big and the Zariski closure of \(\varrho(\pi_1(X))\) is a semisimple algebraic group, we prove that \(X\) is pseudo Picard hyperbolic, and strongly of log general type. 5. If \(X\) is special or \(h\)-special, then \(\varrho(\pi_1(X))\) is virtually abelian. We also prove Claudon-H\"oring-Kollár's conjecture for complex projective manifolds with linear fundamental groups of any characteristic.</description><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNirsKwjAUQIMgWLT_EHC1EFP7cJSidHDTwa3EeEtvKUm8SQv9ex38AKfD4ZwFi2Sa7pPyIOWKxd73QgiZFzLL0og9rmhAEb91qlUEE-qOV9b0oMNIwNFwZz0GnIDrTpHSAQh9QL3j9eyAnnZAjWHmyrz4ybmvqYDW-A1btmrwEP-4ZtvL-V7ViSP7HsGHprcjmW9q5LHMcyFFIdP_rg8Bm0LC</recordid><startdate>20240324</startdate><enddate>20240324</enddate><creator>Deng, Ya</creator><creator>Yamanoi, Katsutoshi</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240324</creationdate><title>Linear Shafarevich Conjecture in positive characteristic, Hyperbolicity and Applications</title><author>Deng, Ya ; Yamanoi, Katsutoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29866020723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Deng, Ya</creatorcontrib><creatorcontrib>Yamanoi, Katsutoshi</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deng, Ya</au><au>Yamanoi, Katsutoshi</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Linear Shafarevich Conjecture in positive characteristic, Hyperbolicity and Applications</atitle><jtitle>arXiv.org</jtitle><date>2024-03-24</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Given a complex quasi-projective normal variety \(X\) and a linear representation \(\varrho:\pi_1(X)\to {\rm GL}_{N}(K)\) with \(K\) any field of positive characteristic, we mainly establish the following results: 1. the construction of the Shafarevich morphism \({\rm sh}_\varrho:X\to {\rm Sh}_\varrho(X)\) associated with \(\varrho\). 2. In cases where \(X\) is projective, \(\varrho\) is faithful and the \(\Gamma\)-dimension of \(X\) is at most two (e.g. \(\dim X=2\)), we prove that the Shafarevich conjecture holds for \(X\). 3. In cases where \(\varrho\) is big, we prove that the Green-Griffiths-Lang conjecture holds for \(X\). 4. When \(\varrho\) is big and the Zariski closure of \(\varrho(\pi_1(X))\) is a semisimple algebraic group, we prove that \(X\) is pseudo Picard hyperbolic, and strongly of log general type. 5. If \(X\) is special or \(h\)-special, then \(\varrho(\pi_1(X))\) is virtually abelian. We also prove Claudon-H\"oring-Kollár's conjecture for complex projective manifolds with linear fundamental groups of any characteristic.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2986602072 |
source | Free E- Journals |
title | Linear Shafarevich Conjecture in positive characteristic, Hyperbolicity and Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T16%3A53%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Linear%20Shafarevich%20Conjecture%20in%20positive%20characteristic,%20Hyperbolicity%20and%20Applications&rft.jtitle=arXiv.org&rft.au=Deng,%20Ya&rft.date=2024-03-24&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2986602072%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2986602072&rft_id=info:pmid/&rfr_iscdi=true |