2021 Amazon Last Mile Routing Research Challenge: Data Set

The 2021 Amazon Last Mile Routing Research Challenge, hosted by Amazon.com’s Last Mile Research team, and scientifically supported by the Massachusetts Institute of Technology’s Center for Transportation and Logistics, prompted participants to leverage real operational data to find new and better wa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transportation science 2024-01, Vol.58 (1), p.8-11
Hauptverfasser: Merchán, Daniel, Arora, Jatin, Pachon, Julian, Konduri, Karthik, Winkenbach, Matthias, Parks, Steven, Noszek, Joseph
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue 1
container_start_page 8
container_title Transportation science
container_volume 58
creator Merchán, Daniel
Arora, Jatin
Pachon, Julian
Konduri, Karthik
Winkenbach, Matthias
Parks, Steven
Noszek, Joseph
description The 2021 Amazon Last Mile Routing Research Challenge, hosted by Amazon.com’s Last Mile Research team, and scientifically supported by the Massachusetts Institute of Technology’s Center for Transportation and Logistics, prompted participants to leverage real operational data to find new and better ways to solve a real-world routing problem. In this article, we describe the data set released for the research challenge, which includes route-, stop-, and package-level features for 9,184 historical routes performed by Amazon drivers in 2018 in five metropolitan areas in the United States. This real-world data set excludes any personally identifiable information: all route and package identifiers have been randomly regenerated and related location data have been obfuscated to ensure anonymity. Although multiple synthetic benchmark data sets are available in the literature, the data set of the 2021 Amazon Last Mile Routing Research Challenge is the first large and publicly available data set to include instances based on real-world operational routing data. History: This paper has been accepted for the Transportation Science Special Issue on Machine Learning Methods and Applications in Large-Scale Route Planning Problems.
doi_str_mv 10.1287/trsc.2022.1173
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2986179758</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2986179758</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-b3f82d3ebc3b9d37bf6d363c72f0fdde848890c89b22d7401fb7ce201b7417863</originalsourceid><addsrcrecordid>eNqFkM1LwzAYh4MoOKdXzwHPrXmTNkl3G_UTJsLUc0jTZOvo2plkB_3rbang0dN7eZ7fCw9C10BSoFLcRh9MSgmlKYBgJ2gGOeVJnmXiFM0IySABnufn6CKEHSGQC8hnaDEIgJd7_d13eKVDxC9Na_G6P8am2-C1DVZ7s8XlVret7TZ2ge901PjNxkt05nQb7NXvnaOPh_v38ilZvT4-l8tVYhinMamYk7RmtjKsKmomKsdrxpkR1BFX11ZmUhbEyKKitBYZAVcJYymBSmQgJGdzdDPtHnz_ebQhql1_9N3wUtFCchCFyOVApRNlfB-Ct04dfLPX_ksBUWMfNfZRYx819hkEPAnW9F0T_nApioJLBnRAkglpOtf7ffhv8gc5OG-n</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2986179758</pqid></control><display><type>article</type><title>2021 Amazon Last Mile Routing Research Challenge: Data Set</title><source>INFORMS PubsOnLine</source><source>EBSCOhost Business Source Complete</source><creator>Merchán, Daniel ; Arora, Jatin ; Pachon, Julian ; Konduri, Karthik ; Winkenbach, Matthias ; Parks, Steven ; Noszek, Joseph</creator><creatorcontrib>Merchán, Daniel ; Arora, Jatin ; Pachon, Julian ; Konduri, Karthik ; Winkenbach, Matthias ; Parks, Steven ; Noszek, Joseph</creatorcontrib><description>The 2021 Amazon Last Mile Routing Research Challenge, hosted by Amazon.com’s Last Mile Research team, and scientifically supported by the Massachusetts Institute of Technology’s Center for Transportation and Logistics, prompted participants to leverage real operational data to find new and better ways to solve a real-world routing problem. In this article, we describe the data set released for the research challenge, which includes route-, stop-, and package-level features for 9,184 historical routes performed by Amazon drivers in 2018 in five metropolitan areas in the United States. This real-world data set excludes any personally identifiable information: all route and package identifiers have been randomly regenerated and related location data have been obfuscated to ensure anonymity. Although multiple synthetic benchmark data sets are available in the literature, the data set of the 2021 Amazon Last Mile Routing Research Challenge is the first large and publicly available data set to include instances based on real-world operational routing data. History: This paper has been accepted for the Transportation Science Special Issue on Machine Learning Methods and Applications in Large-Scale Route Planning Problems.</description><identifier>ISSN: 0041-1655</identifier><identifier>EISSN: 1526-5447</identifier><identifier>DOI: 10.1287/trsc.2022.1173</identifier><language>eng</language><publisher>Baltimore: INFORMS</publisher><subject>Data collection ; Datasets ; last-mile delivery ; Logistics ; machine learning ; Metropolitan areas ; optimization ; Route optimization ; Routing ; sequencing ; Traffic flow ; vehicle routing</subject><ispartof>Transportation science, 2024-01, Vol.58 (1), p.8-11</ispartof><rights>Copyright Institute for Operations Research and the Management Sciences Jan/Feb 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-b3f82d3ebc3b9d37bf6d363c72f0fdde848890c89b22d7401fb7ce201b7417863</citedby><cites>FETCH-LOGICAL-c362t-b3f82d3ebc3b9d37bf6d363c72f0fdde848890c89b22d7401fb7ce201b7417863</cites><orcidid>0000-0003-1822-083X ; 0000-0002-8018-9565 ; 0000-0002-8237-625X ; 0000-0002-6214-5585</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubsonline.informs.org/doi/full/10.1287/trsc.2022.1173$$EHTML$$P50$$Ginforms$$H</linktohtml><link.rule.ids>314,780,784,3692,27924,27925,62616</link.rule.ids></links><search><creatorcontrib>Merchán, Daniel</creatorcontrib><creatorcontrib>Arora, Jatin</creatorcontrib><creatorcontrib>Pachon, Julian</creatorcontrib><creatorcontrib>Konduri, Karthik</creatorcontrib><creatorcontrib>Winkenbach, Matthias</creatorcontrib><creatorcontrib>Parks, Steven</creatorcontrib><creatorcontrib>Noszek, Joseph</creatorcontrib><title>2021 Amazon Last Mile Routing Research Challenge: Data Set</title><title>Transportation science</title><description>The 2021 Amazon Last Mile Routing Research Challenge, hosted by Amazon.com’s Last Mile Research team, and scientifically supported by the Massachusetts Institute of Technology’s Center for Transportation and Logistics, prompted participants to leverage real operational data to find new and better ways to solve a real-world routing problem. In this article, we describe the data set released for the research challenge, which includes route-, stop-, and package-level features for 9,184 historical routes performed by Amazon drivers in 2018 in five metropolitan areas in the United States. This real-world data set excludes any personally identifiable information: all route and package identifiers have been randomly regenerated and related location data have been obfuscated to ensure anonymity. Although multiple synthetic benchmark data sets are available in the literature, the data set of the 2021 Amazon Last Mile Routing Research Challenge is the first large and publicly available data set to include instances based on real-world operational routing data. History: This paper has been accepted for the Transportation Science Special Issue on Machine Learning Methods and Applications in Large-Scale Route Planning Problems.</description><subject>Data collection</subject><subject>Datasets</subject><subject>last-mile delivery</subject><subject>Logistics</subject><subject>machine learning</subject><subject>Metropolitan areas</subject><subject>optimization</subject><subject>Route optimization</subject><subject>Routing</subject><subject>sequencing</subject><subject>Traffic flow</subject><subject>vehicle routing</subject><issn>0041-1655</issn><issn>1526-5447</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkM1LwzAYh4MoOKdXzwHPrXmTNkl3G_UTJsLUc0jTZOvo2plkB_3rbang0dN7eZ7fCw9C10BSoFLcRh9MSgmlKYBgJ2gGOeVJnmXiFM0IySABnufn6CKEHSGQC8hnaDEIgJd7_d13eKVDxC9Na_G6P8am2-C1DVZ7s8XlVret7TZ2ge901PjNxkt05nQb7NXvnaOPh_v38ilZvT4-l8tVYhinMamYk7RmtjKsKmomKsdrxpkR1BFX11ZmUhbEyKKitBYZAVcJYymBSmQgJGdzdDPtHnz_ebQhql1_9N3wUtFCchCFyOVApRNlfB-Ct04dfLPX_ksBUWMfNfZRYx819hkEPAnW9F0T_nApioJLBnRAkglpOtf7ffhv8gc5OG-n</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Merchán, Daniel</creator><creator>Arora, Jatin</creator><creator>Pachon, Julian</creator><creator>Konduri, Karthik</creator><creator>Winkenbach, Matthias</creator><creator>Parks, Steven</creator><creator>Noszek, Joseph</creator><general>INFORMS</general><general>Institute for Operations Research and the Management Sciences</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><orcidid>https://orcid.org/0000-0003-1822-083X</orcidid><orcidid>https://orcid.org/0000-0002-8018-9565</orcidid><orcidid>https://orcid.org/0000-0002-8237-625X</orcidid><orcidid>https://orcid.org/0000-0002-6214-5585</orcidid></search><sort><creationdate>202401</creationdate><title>2021 Amazon Last Mile Routing Research Challenge: Data Set</title><author>Merchán, Daniel ; Arora, Jatin ; Pachon, Julian ; Konduri, Karthik ; Winkenbach, Matthias ; Parks, Steven ; Noszek, Joseph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-b3f82d3ebc3b9d37bf6d363c72f0fdde848890c89b22d7401fb7ce201b7417863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Data collection</topic><topic>Datasets</topic><topic>last-mile delivery</topic><topic>Logistics</topic><topic>machine learning</topic><topic>Metropolitan areas</topic><topic>optimization</topic><topic>Route optimization</topic><topic>Routing</topic><topic>sequencing</topic><topic>Traffic flow</topic><topic>vehicle routing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Merchán, Daniel</creatorcontrib><creatorcontrib>Arora, Jatin</creatorcontrib><creatorcontrib>Pachon, Julian</creatorcontrib><creatorcontrib>Konduri, Karthik</creatorcontrib><creatorcontrib>Winkenbach, Matthias</creatorcontrib><creatorcontrib>Parks, Steven</creatorcontrib><creatorcontrib>Noszek, Joseph</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Transportation science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Merchán, Daniel</au><au>Arora, Jatin</au><au>Pachon, Julian</au><au>Konduri, Karthik</au><au>Winkenbach, Matthias</au><au>Parks, Steven</au><au>Noszek, Joseph</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>2021 Amazon Last Mile Routing Research Challenge: Data Set</atitle><jtitle>Transportation science</jtitle><date>2024-01</date><risdate>2024</risdate><volume>58</volume><issue>1</issue><spage>8</spage><epage>11</epage><pages>8-11</pages><issn>0041-1655</issn><eissn>1526-5447</eissn><abstract>The 2021 Amazon Last Mile Routing Research Challenge, hosted by Amazon.com’s Last Mile Research team, and scientifically supported by the Massachusetts Institute of Technology’s Center for Transportation and Logistics, prompted participants to leverage real operational data to find new and better ways to solve a real-world routing problem. In this article, we describe the data set released for the research challenge, which includes route-, stop-, and package-level features for 9,184 historical routes performed by Amazon drivers in 2018 in five metropolitan areas in the United States. This real-world data set excludes any personally identifiable information: all route and package identifiers have been randomly regenerated and related location data have been obfuscated to ensure anonymity. Although multiple synthetic benchmark data sets are available in the literature, the data set of the 2021 Amazon Last Mile Routing Research Challenge is the first large and publicly available data set to include instances based on real-world operational routing data. History: This paper has been accepted for the Transportation Science Special Issue on Machine Learning Methods and Applications in Large-Scale Route Planning Problems.</abstract><cop>Baltimore</cop><pub>INFORMS</pub><doi>10.1287/trsc.2022.1173</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0003-1822-083X</orcidid><orcidid>https://orcid.org/0000-0002-8018-9565</orcidid><orcidid>https://orcid.org/0000-0002-8237-625X</orcidid><orcidid>https://orcid.org/0000-0002-6214-5585</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0041-1655
ispartof Transportation science, 2024-01, Vol.58 (1), p.8-11
issn 0041-1655
1526-5447
language eng
recordid cdi_proquest_journals_2986179758
source INFORMS PubsOnLine; EBSCOhost Business Source Complete
subjects Data collection
Datasets
last-mile delivery
Logistics
machine learning
Metropolitan areas
optimization
Route optimization
Routing
sequencing
Traffic flow
vehicle routing
title 2021 Amazon Last Mile Routing Research Challenge: Data Set
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T19%3A40%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=2021%20Amazon%20Last%20Mile%20Routing%20Research%20Challenge:%20Data%20Set&rft.jtitle=Transportation%20science&rft.au=Merch%C3%A1n,%20Daniel&rft.date=2024-01&rft.volume=58&rft.issue=1&rft.spage=8&rft.epage=11&rft.pages=8-11&rft.issn=0041-1655&rft.eissn=1526-5447&rft_id=info:doi/10.1287/trsc.2022.1173&rft_dat=%3Cproquest_cross%3E2986179758%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2986179758&rft_id=info:pmid/&rfr_iscdi=true