Adaptive and robust multi-task learning

We study the multitask learning problem that aims to simultaneously analyze multiple data sets collected from different sources and learn one model for each of them. We propose a family of adaptive methods that automatically utilize possible similarities among those tasks while carefully handling th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of statistics 2023-10, Vol.51 (5), p.2015
Hauptverfasser: Duan, Yaqi, Wang, Kaizheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the multitask learning problem that aims to simultaneously analyze multiple data sets collected from different sources and learn one model for each of them. We propose a family of adaptive methods that automatically utilize possible similarities among those tasks while carefully handling their differences. We derive sharp statistical guarantees for the methods and prove their robustness against outlier tasks. Numerical experiments on synthetic and real data sets demonstrate the efficacy of our new methods.
ISSN:0090-5364
2168-8966
DOI:10.1214/23-AOS2319