Integrated Aquaculture Monitoring System Using Combined Wireless Sensor Networks and Deep Reinforcement Learning

Freshwater fish is one of the commodities experiencing an increasing growth rate from 1990 to 2018. Many efforts have been made to meet market needs, through both fisheries technology and applied technology, one of which is an integrated monitoring system. In this study, an aquaculture monitoring sy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors and materials 2024-01, Vol.36 (3), p.1019
Hauptverfasser: Sung, Wen-Tsai, Isa, Indra Griha Tofik, Hsiao, Sung-Jung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 1019
container_title Sensors and materials
container_volume 36
creator Sung, Wen-Tsai
Isa, Indra Griha Tofik
Hsiao, Sung-Jung
description Freshwater fish is one of the commodities experiencing an increasing growth rate from 1990 to 2018. Many efforts have been made to meet market needs, through both fisheries technology and applied technology, one of which is an integrated monitoring system. In this study, an aquaculture monitoring system was developed that integrates wireless sensor networks (WSNs) based on temperature, pH, and turbidity with deep reinforcement learning. The purpose of this study is to produce a convenient, precise, and low-cost aquaculture monitoring system. The stages of the study are (1) the integration of all the WSN components, (2) the validation of the WSNs, (3) the implementation of the analysis model in the system, (4) the implementation of the recommended model into the DRL system, and (5) practical experimentation using the aquaculture monitoring system. The WSN validation results indicate that the average percentage error is 3.23%, whereas at the system modeling stage, the optimal accuracy is 98.80%. In the experiment to monitor real aquaculture environmental conditions, an accuracy of 97% is obtained.
doi_str_mv 10.18494/SAM4660
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2986178318</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2986178318</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-be4ef9e98c30f62f4379d05ff03441f0f1acb8bfa33f3cc683aaa56e050b6f1e3</originalsourceid><addsrcrecordid>eNotkFFLwzAYRYMoOObAnxDwxZdq0qRZ8jimzsGm4Bw-ljT7MjrXpEtSZP_e6vZ0uXA4Fy5Ct5Q8UMkVf1xNllwIcoEGOWdFRqRQl2hAFOUZV6y4RqMYd4QQKgsicjFA7dwl2AadYIMnh06bbp-6AHjpXZ18qN0Wr44xQYPX8a9MfVPVroe_6gB7iBGvwEUf8BukHx--I9Zug58AWvwBtbM-GGjAJbwAHVxvuEFXVu8jjM45ROuX58_pa7Z4n82nk0VmGBUpq4CDVaCkYcSK3HI2VhtSWEsY59QSS7WpZGU1Y5YZIyTTWhcCSEEqYSmwIbo7edvgDx3EVO58F1w_WeZKCjqWjMqeuj9RJvgYA9iyDXWjw7GkpPy_tDxfyn4B2QBqrA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2986178318</pqid></control><display><type>article</type><title>Integrated Aquaculture Monitoring System Using Combined Wireless Sensor Networks and Deep Reinforcement Learning</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Sung, Wen-Tsai ; Isa, Indra Griha Tofik ; Hsiao, Sung-Jung</creator><creatorcontrib>Sung, Wen-Tsai ; Isa, Indra Griha Tofik ; Hsiao, Sung-Jung</creatorcontrib><description>Freshwater fish is one of the commodities experiencing an increasing growth rate from 1990 to 2018. Many efforts have been made to meet market needs, through both fisheries technology and applied technology, one of which is an integrated monitoring system. In this study, an aquaculture monitoring system was developed that integrates wireless sensor networks (WSNs) based on temperature, pH, and turbidity with deep reinforcement learning. The purpose of this study is to produce a convenient, precise, and low-cost aquaculture monitoring system. The stages of the study are (1) the integration of all the WSN components, (2) the validation of the WSNs, (3) the implementation of the analysis model in the system, (4) the implementation of the recommended model into the DRL system, and (5) practical experimentation using the aquaculture monitoring system. The WSN validation results indicate that the average percentage error is 3.23%, whereas at the system modeling stage, the optimal accuracy is 98.80%. In the experiment to monitor real aquaculture environmental conditions, an accuracy of 97% is obtained.</description><identifier>ISSN: 0914-4935</identifier><identifier>EISSN: 2435-0869</identifier><identifier>DOI: 10.18494/SAM4660</identifier><language>eng</language><publisher>Tokyo: MYU Scientific Publishing Division</publisher><subject>Accuracy ; Aquaculture ; Deep learning ; Fisheries ; Monitoring ; Monitoring systems ; Turbidity ; Wireless sensor networks</subject><ispartof>Sensors and materials, 2024-01, Vol.36 (3), p.1019</ispartof><rights>Copyright MYU Scientific Publishing Division 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Sung, Wen-Tsai</creatorcontrib><creatorcontrib>Isa, Indra Griha Tofik</creatorcontrib><creatorcontrib>Hsiao, Sung-Jung</creatorcontrib><title>Integrated Aquaculture Monitoring System Using Combined Wireless Sensor Networks and Deep Reinforcement Learning</title><title>Sensors and materials</title><description>Freshwater fish is one of the commodities experiencing an increasing growth rate from 1990 to 2018. Many efforts have been made to meet market needs, through both fisheries technology and applied technology, one of which is an integrated monitoring system. In this study, an aquaculture monitoring system was developed that integrates wireless sensor networks (WSNs) based on temperature, pH, and turbidity with deep reinforcement learning. The purpose of this study is to produce a convenient, precise, and low-cost aquaculture monitoring system. The stages of the study are (1) the integration of all the WSN components, (2) the validation of the WSNs, (3) the implementation of the analysis model in the system, (4) the implementation of the recommended model into the DRL system, and (5) practical experimentation using the aquaculture monitoring system. The WSN validation results indicate that the average percentage error is 3.23%, whereas at the system modeling stage, the optimal accuracy is 98.80%. In the experiment to monitor real aquaculture environmental conditions, an accuracy of 97% is obtained.</description><subject>Accuracy</subject><subject>Aquaculture</subject><subject>Deep learning</subject><subject>Fisheries</subject><subject>Monitoring</subject><subject>Monitoring systems</subject><subject>Turbidity</subject><subject>Wireless sensor networks</subject><issn>0914-4935</issn><issn>2435-0869</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotkFFLwzAYRYMoOObAnxDwxZdq0qRZ8jimzsGm4Bw-ljT7MjrXpEtSZP_e6vZ0uXA4Fy5Ct5Q8UMkVf1xNllwIcoEGOWdFRqRQl2hAFOUZV6y4RqMYd4QQKgsicjFA7dwl2AadYIMnh06bbp-6AHjpXZ18qN0Wr44xQYPX8a9MfVPVroe_6gB7iBGvwEUf8BukHx--I9Zug58AWvwBtbM-GGjAJbwAHVxvuEFXVu8jjM45ROuX58_pa7Z4n82nk0VmGBUpq4CDVaCkYcSK3HI2VhtSWEsY59QSS7WpZGU1Y5YZIyTTWhcCSEEqYSmwIbo7edvgDx3EVO58F1w_WeZKCjqWjMqeuj9RJvgYA9iyDXWjw7GkpPy_tDxfyn4B2QBqrA</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Sung, Wen-Tsai</creator><creator>Isa, Indra Griha Tofik</creator><creator>Hsiao, Sung-Jung</creator><general>MYU Scientific Publishing Division</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20240101</creationdate><title>Integrated Aquaculture Monitoring System Using Combined Wireless Sensor Networks and Deep Reinforcement Learning</title><author>Sung, Wen-Tsai ; Isa, Indra Griha Tofik ; Hsiao, Sung-Jung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-be4ef9e98c30f62f4379d05ff03441f0f1acb8bfa33f3cc683aaa56e050b6f1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Aquaculture</topic><topic>Deep learning</topic><topic>Fisheries</topic><topic>Monitoring</topic><topic>Monitoring systems</topic><topic>Turbidity</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sung, Wen-Tsai</creatorcontrib><creatorcontrib>Isa, Indra Griha Tofik</creatorcontrib><creatorcontrib>Hsiao, Sung-Jung</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sensors and materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sung, Wen-Tsai</au><au>Isa, Indra Griha Tofik</au><au>Hsiao, Sung-Jung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrated Aquaculture Monitoring System Using Combined Wireless Sensor Networks and Deep Reinforcement Learning</atitle><jtitle>Sensors and materials</jtitle><date>2024-01-01</date><risdate>2024</risdate><volume>36</volume><issue>3</issue><spage>1019</spage><pages>1019-</pages><issn>0914-4935</issn><eissn>2435-0869</eissn><abstract>Freshwater fish is one of the commodities experiencing an increasing growth rate from 1990 to 2018. Many efforts have been made to meet market needs, through both fisheries technology and applied technology, one of which is an integrated monitoring system. In this study, an aquaculture monitoring system was developed that integrates wireless sensor networks (WSNs) based on temperature, pH, and turbidity with deep reinforcement learning. The purpose of this study is to produce a convenient, precise, and low-cost aquaculture monitoring system. The stages of the study are (1) the integration of all the WSN components, (2) the validation of the WSNs, (3) the implementation of the analysis model in the system, (4) the implementation of the recommended model into the DRL system, and (5) practical experimentation using the aquaculture monitoring system. The WSN validation results indicate that the average percentage error is 3.23%, whereas at the system modeling stage, the optimal accuracy is 98.80%. In the experiment to monitor real aquaculture environmental conditions, an accuracy of 97% is obtained.</abstract><cop>Tokyo</cop><pub>MYU Scientific Publishing Division</pub><doi>10.18494/SAM4660</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0914-4935
ispartof Sensors and materials, 2024-01, Vol.36 (3), p.1019
issn 0914-4935
2435-0869
language eng
recordid cdi_proquest_journals_2986178318
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Accuracy
Aquaculture
Deep learning
Fisheries
Monitoring
Monitoring systems
Turbidity
Wireless sensor networks
title Integrated Aquaculture Monitoring System Using Combined Wireless Sensor Networks and Deep Reinforcement Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T12%3A34%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrated%20Aquaculture%20Monitoring%20System%20Using%20Combined%20Wireless%20Sensor%20Networks%20and%20Deep%20Reinforcement%20Learning&rft.jtitle=Sensors%20and%20materials&rft.au=Sung,%20Wen-Tsai&rft.date=2024-01-01&rft.volume=36&rft.issue=3&rft.spage=1019&rft.pages=1019-&rft.issn=0914-4935&rft.eissn=2435-0869&rft_id=info:doi/10.18494/SAM4660&rft_dat=%3Cproquest_cross%3E2986178318%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2986178318&rft_id=info:pmid/&rfr_iscdi=true