A discharging internal resistance dynamic model of lithium-ion batteries based on multiple influencing factors

Direct current internal resistance (DCR) is a key indicator for assessing the health status of batteries, and it is of significant importance in practical applications for power estimation and battery thermal management. The DCR of lithium-ion batteries is influenced by factors such as environmental...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Central South University 2024-02, Vol.31 (2), p.670-678
Hauptverfasser: Wu, Chun-ling, Song, Jiang-xin, Huang, Xin-rong, Zhao, Yu-bing, Meng, Jin-hao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 678
container_issue 2
container_start_page 670
container_title Journal of Central South University
container_volume 31
creator Wu, Chun-ling
Song, Jiang-xin
Huang, Xin-rong
Zhao, Yu-bing
Meng, Jin-hao
description Direct current internal resistance (DCR) is a key indicator for assessing the health status of batteries, and it is of significant importance in practical applications for power estimation and battery thermal management. The DCR of lithium-ion batteries is influenced by factors such as environmental temperature, state of charge (SOC), and current rate (C-rate). In order to investigate the influence of these factors on battery DCR, this paper proposes a DCR dynamic model of lithium-ion battery based on multiple influencing factors (multi-factor). The model utilizes a binary quadratic polynomial to perform least squares fitting of the DCR with respect to environmental temperature and battery SOC. The obtained coefficients of the binary quadratic polynomial are then fitted with a cubic polynomial with respect to the C-rate, thus establishing the relationship between DCR and C-rate, environmental temperature, and SOC. Multi-rate hybrid pulse power characterization (HPPC) experiment is conducted to perform charging-discharging tests on lithiumion batteries. The experimental results demonstrate that the RMSE between the estimated DCR obtained from the established model and the experimental values is 0.9758 mΩ, confirming the effectiveness of the proposed DCR model.
doi_str_mv 10.1007/s11771-024-5574-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2985944158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2985944158</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-af7d5d79d85781a65d4b6b4269fc1fb30303cd873c5f607b649922b08c56c6f43</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYsoOOj8AHcB19EkbZJmOQy-YMCNrkOax0ykTcckXfTfm1LBldzFPVzOOXC_qrrD6AEjxB8TxpxjiEgDKeUNnC-qDSGEQ0pIfVk0EhSSVojrapuS71CNCauZYJsq7IDxSZ9UPPpwBD5kG4PqQbTJp6yCtsDMQQ1eg2E0tgejA73PJz8N0I8BdCqXhLepqGQNKKdh6rM_97aUuX6yQS_FTuk8xnRbXTnVJ7v93TfV5_PTx_4VHt5f3va7A9SEtRkqxw01XJiW8hYrRk3Tsa4hTDiNXVejMtq0vNbUMcQ71ghBSIdaTZlmrqlvqvu19xzH78mmLL_GaXksSSJaKpoG07a48OrScUwpWifP0Q8qzhIjuZCVK1lZyMqFrJxLhqyZVLzhaONf8_-hH8nsfa4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2985944158</pqid></control><display><type>article</type><title>A discharging internal resistance dynamic model of lithium-ion batteries based on multiple influencing factors</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Wu, Chun-ling ; Song, Jiang-xin ; Huang, Xin-rong ; Zhao, Yu-bing ; Meng, Jin-hao</creator><creatorcontrib>Wu, Chun-ling ; Song, Jiang-xin ; Huang, Xin-rong ; Zhao, Yu-bing ; Meng, Jin-hao</creatorcontrib><description>Direct current internal resistance (DCR) is a key indicator for assessing the health status of batteries, and it is of significant importance in practical applications for power estimation and battery thermal management. The DCR of lithium-ion batteries is influenced by factors such as environmental temperature, state of charge (SOC), and current rate (C-rate). In order to investigate the influence of these factors on battery DCR, this paper proposes a DCR dynamic model of lithium-ion battery based on multiple influencing factors (multi-factor). The model utilizes a binary quadratic polynomial to perform least squares fitting of the DCR with respect to environmental temperature and battery SOC. The obtained coefficients of the binary quadratic polynomial are then fitted with a cubic polynomial with respect to the C-rate, thus establishing the relationship between DCR and C-rate, environmental temperature, and SOC. Multi-rate hybrid pulse power characterization (HPPC) experiment is conducted to perform charging-discharging tests on lithiumion batteries. The experimental results demonstrate that the RMSE between the estimated DCR obtained from the established model and the experimental values is 0.9758 mΩ, confirming the effectiveness of the proposed DCR model.</description><identifier>ISSN: 2095-2899</identifier><identifier>EISSN: 2227-5223</identifier><identifier>DOI: 10.1007/s11771-024-5574-y</identifier><language>eng</language><publisher>Changsha: Central South University</publisher><subject>Direct current ; Discharge ; Dynamic models ; Electric charge ; Engineering ; Lithium ; Lithium-ion batteries ; Metallic Materials ; Polynomials ; Rechargeable batteries ; State of charge ; Thermal management</subject><ispartof>Journal of Central South University, 2024-02, Vol.31 (2), p.670-678</ispartof><rights>Central South University 2024</rights><rights>Central South University 2024.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-af7d5d79d85781a65d4b6b4269fc1fb30303cd873c5f607b649922b08c56c6f43</cites><orcidid>0009-0002-9040-4377 ; 0000-0001-7291-2613</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11771-024-5574-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11771-024-5574-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Wu, Chun-ling</creatorcontrib><creatorcontrib>Song, Jiang-xin</creatorcontrib><creatorcontrib>Huang, Xin-rong</creatorcontrib><creatorcontrib>Zhao, Yu-bing</creatorcontrib><creatorcontrib>Meng, Jin-hao</creatorcontrib><title>A discharging internal resistance dynamic model of lithium-ion batteries based on multiple influencing factors</title><title>Journal of Central South University</title><addtitle>J. Cent. South Univ</addtitle><description>Direct current internal resistance (DCR) is a key indicator for assessing the health status of batteries, and it is of significant importance in practical applications for power estimation and battery thermal management. The DCR of lithium-ion batteries is influenced by factors such as environmental temperature, state of charge (SOC), and current rate (C-rate). In order to investigate the influence of these factors on battery DCR, this paper proposes a DCR dynamic model of lithium-ion battery based on multiple influencing factors (multi-factor). The model utilizes a binary quadratic polynomial to perform least squares fitting of the DCR with respect to environmental temperature and battery SOC. The obtained coefficients of the binary quadratic polynomial are then fitted with a cubic polynomial with respect to the C-rate, thus establishing the relationship between DCR and C-rate, environmental temperature, and SOC. Multi-rate hybrid pulse power characterization (HPPC) experiment is conducted to perform charging-discharging tests on lithiumion batteries. The experimental results demonstrate that the RMSE between the estimated DCR obtained from the established model and the experimental values is 0.9758 mΩ, confirming the effectiveness of the proposed DCR model.</description><subject>Direct current</subject><subject>Discharge</subject><subject>Dynamic models</subject><subject>Electric charge</subject><subject>Engineering</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Metallic Materials</subject><subject>Polynomials</subject><subject>Rechargeable batteries</subject><subject>State of charge</subject><subject>Thermal management</subject><issn>2095-2899</issn><issn>2227-5223</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLxDAUhYsoOOj8AHcB19EkbZJmOQy-YMCNrkOax0ykTcckXfTfm1LBldzFPVzOOXC_qrrD6AEjxB8TxpxjiEgDKeUNnC-qDSGEQ0pIfVk0EhSSVojrapuS71CNCauZYJsq7IDxSZ9UPPpwBD5kG4PqQbTJp6yCtsDMQQ1eg2E0tgejA73PJz8N0I8BdCqXhLepqGQNKKdh6rM_97aUuX6yQS_FTuk8xnRbXTnVJ7v93TfV5_PTx_4VHt5f3va7A9SEtRkqxw01XJiW8hYrRk3Tsa4hTDiNXVejMtq0vNbUMcQ71ghBSIdaTZlmrqlvqvu19xzH78mmLL_GaXksSSJaKpoG07a48OrScUwpWifP0Q8qzhIjuZCVK1lZyMqFrJxLhqyZVLzhaONf8_-hH8nsfa4</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Wu, Chun-ling</creator><creator>Song, Jiang-xin</creator><creator>Huang, Xin-rong</creator><creator>Zhao, Yu-bing</creator><creator>Meng, Jin-hao</creator><general>Central South University</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0002-9040-4377</orcidid><orcidid>https://orcid.org/0000-0001-7291-2613</orcidid></search><sort><creationdate>20240201</creationdate><title>A discharging internal resistance dynamic model of lithium-ion batteries based on multiple influencing factors</title><author>Wu, Chun-ling ; Song, Jiang-xin ; Huang, Xin-rong ; Zhao, Yu-bing ; Meng, Jin-hao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-af7d5d79d85781a65d4b6b4269fc1fb30303cd873c5f607b649922b08c56c6f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Direct current</topic><topic>Discharge</topic><topic>Dynamic models</topic><topic>Electric charge</topic><topic>Engineering</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Metallic Materials</topic><topic>Polynomials</topic><topic>Rechargeable batteries</topic><topic>State of charge</topic><topic>Thermal management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Chun-ling</creatorcontrib><creatorcontrib>Song, Jiang-xin</creatorcontrib><creatorcontrib>Huang, Xin-rong</creatorcontrib><creatorcontrib>Zhao, Yu-bing</creatorcontrib><creatorcontrib>Meng, Jin-hao</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of Central South University</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Chun-ling</au><au>Song, Jiang-xin</au><au>Huang, Xin-rong</au><au>Zhao, Yu-bing</au><au>Meng, Jin-hao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A discharging internal resistance dynamic model of lithium-ion batteries based on multiple influencing factors</atitle><jtitle>Journal of Central South University</jtitle><stitle>J. Cent. South Univ</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>31</volume><issue>2</issue><spage>670</spage><epage>678</epage><pages>670-678</pages><issn>2095-2899</issn><eissn>2227-5223</eissn><abstract>Direct current internal resistance (DCR) is a key indicator for assessing the health status of batteries, and it is of significant importance in practical applications for power estimation and battery thermal management. The DCR of lithium-ion batteries is influenced by factors such as environmental temperature, state of charge (SOC), and current rate (C-rate). In order to investigate the influence of these factors on battery DCR, this paper proposes a DCR dynamic model of lithium-ion battery based on multiple influencing factors (multi-factor). The model utilizes a binary quadratic polynomial to perform least squares fitting of the DCR with respect to environmental temperature and battery SOC. The obtained coefficients of the binary quadratic polynomial are then fitted with a cubic polynomial with respect to the C-rate, thus establishing the relationship between DCR and C-rate, environmental temperature, and SOC. Multi-rate hybrid pulse power characterization (HPPC) experiment is conducted to perform charging-discharging tests on lithiumion batteries. The experimental results demonstrate that the RMSE between the estimated DCR obtained from the established model and the experimental values is 0.9758 mΩ, confirming the effectiveness of the proposed DCR model.</abstract><cop>Changsha</cop><pub>Central South University</pub><doi>10.1007/s11771-024-5574-y</doi><tpages>9</tpages><orcidid>https://orcid.org/0009-0002-9040-4377</orcidid><orcidid>https://orcid.org/0000-0001-7291-2613</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2095-2899
ispartof Journal of Central South University, 2024-02, Vol.31 (2), p.670-678
issn 2095-2899
2227-5223
language eng
recordid cdi_proquest_journals_2985944158
source Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings
subjects Direct current
Discharge
Dynamic models
Electric charge
Engineering
Lithium
Lithium-ion batteries
Metallic Materials
Polynomials
Rechargeable batteries
State of charge
Thermal management
title A discharging internal resistance dynamic model of lithium-ion batteries based on multiple influencing factors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T07%3A58%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20discharging%20internal%20resistance%20dynamic%20model%20of%20lithium-ion%20batteries%20based%20on%20multiple%20influencing%20factors&rft.jtitle=Journal%20of%20Central%20South%20University&rft.au=Wu,%20Chun-ling&rft.date=2024-02-01&rft.volume=31&rft.issue=2&rft.spage=670&rft.epage=678&rft.pages=670-678&rft.issn=2095-2899&rft.eissn=2227-5223&rft_id=info:doi/10.1007/s11771-024-5574-y&rft_dat=%3Cproquest_cross%3E2985944158%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2985944158&rft_id=info:pmid/&rfr_iscdi=true