Towards Efficient Learning of GNNs on High-Dimensional Multilayered Representations of Tabular Data
For prediction tasks using tabular data, it is possible to extract additional information about the target variable by examining the relationships between the objects. Specifically, if it is possible to receive agraph in which the objects are represented as vertices and the relationships are express...
Gespeichert in:
Veröffentlicht in: | Doklady. Mathematics 2023-12, Vol.108 (Suppl 2), p.S265-S271 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | S271 |
---|---|
container_issue | Suppl 2 |
container_start_page | S265 |
container_title | Doklady. Mathematics |
container_volume | 108 |
creator | Medvedev, A. V. Djakonov, A. G. |
description | For prediction tasks using tabular data, it is possible to extract additional information about the target variable by examining the relationships between the objects. Specifically, if it is possible to receive agraph in which the objects are represented as vertices and the relationships are expressed as edges, then it is likely that the graph structure contains valuable information. Recent research has indicated that jointly training graph neural networks and gradient boostings on this type of data can increase the accuracy of predictions. This article proposes new methods for learning on tabular data that incorporates a graph structure, in an attempt to combine modern multilayer techniques for processing tabular data and graph neural networks. In addition, we discuss ways to mitigate the computational complexity of the proposed models and conduct experiments in both inductive and transductive settings. Our findings demonstrate tha the proposed approaches provide comparable quality to modern methods. |
doi_str_mv | 10.1134/S1064562423701193 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2985941159</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2985941159</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-d841f381cee59cdae988fa84eca44f7c6e216a391065d26a387f115f3433792f3</originalsourceid><addsrcrecordid>eNp1kEFLAzEQhYMoWKs_wFvA82omye4mR2lrK9QKWs9LzE5qyna3Jluk_96UCh7E0zx473vMDCHXwG4BhLx7BVbIvOCSi5IBaHFCBpALyJQo-GnSyc4O_jm5iHHNmMw5YwNil92XCXWkE-e89dj2dI4mtL5d0c7R6WIRadfSmV99ZGO_wTb6rjUNfdo1vW_MHgPW9AW3AWNiTZ_ceACX5n3XmEDHpjeX5MyZJuLVzxySt4fJcjTL5s_Tx9H9PLO8UH1WKwlOKLCIuba1Qa2UM0qiNVK60hbIoTBCp1PymielSgeQOyGFKDV3Ykhujr3b0H3uMPbVutuFtG2suFa5limtUwqOKRu6GAO6ahv8xoR9Baw6_LL688vE8CMTU7ZdYfht_h_6BjhAdX0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2985941159</pqid></control><display><type>article</type><title>Towards Efficient Learning of GNNs on High-Dimensional Multilayered Representations of Tabular Data</title><source>Springer Online Journals</source><creator>Medvedev, A. V. ; Djakonov, A. G.</creator><creatorcontrib>Medvedev, A. V. ; Djakonov, A. G.</creatorcontrib><description>For prediction tasks using tabular data, it is possible to extract additional information about the target variable by examining the relationships between the objects. Specifically, if it is possible to receive agraph in which the objects are represented as vertices and the relationships are expressed as edges, then it is likely that the graph structure contains valuable information. Recent research has indicated that jointly training graph neural networks and gradient boostings on this type of data can increase the accuracy of predictions. This article proposes new methods for learning on tabular data that incorporates a graph structure, in an attempt to combine modern multilayer techniques for processing tabular data and graph neural networks. In addition, we discuss ways to mitigate the computational complexity of the proposed models and conduct experiments in both inductive and transductive settings. Our findings demonstrate tha the proposed approaches provide comparable quality to modern methods.</description><identifier>ISSN: 1064-5624</identifier><identifier>EISSN: 1531-8362</identifier><identifier>DOI: 10.1134/S1064562423701193</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Apexes ; Graph neural networks ; Graph theory ; Learning ; Mathematics ; Mathematics and Statistics ; Multilayers ; Tables (data)</subject><ispartof>Doklady. Mathematics, 2023-12, Vol.108 (Suppl 2), p.S265-S271</ispartof><rights>Pleiades Publishing, Ltd. 2023. ISSN 1064-5624, Doklady Mathematics, 2023, Vol. 108, Suppl. 2, pp. S265–S271. © Pleiades Publishing, Ltd., 2023. ISSN 1064-5624, Doklady Mathematics, 2023. © Pleiades Publishing, Ltd., 2023. Russian Text © The Author(s), 2023, published in Doklady Rossiiskoi Akademii Nauk. Matematika, Informatika, Protsessy Upravleniya, 2023, Vol. 514, No. 2, pp. 118–125.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-d841f381cee59cdae988fa84eca44f7c6e216a391065d26a387f115f3433792f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1064562423701193$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1064562423701193$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Medvedev, A. V.</creatorcontrib><creatorcontrib>Djakonov, A. G.</creatorcontrib><title>Towards Efficient Learning of GNNs on High-Dimensional Multilayered Representations of Tabular Data</title><title>Doklady. Mathematics</title><addtitle>Dokl. Math</addtitle><description>For prediction tasks using tabular data, it is possible to extract additional information about the target variable by examining the relationships between the objects. Specifically, if it is possible to receive agraph in which the objects are represented as vertices and the relationships are expressed as edges, then it is likely that the graph structure contains valuable information. Recent research has indicated that jointly training graph neural networks and gradient boostings on this type of data can increase the accuracy of predictions. This article proposes new methods for learning on tabular data that incorporates a graph structure, in an attempt to combine modern multilayer techniques for processing tabular data and graph neural networks. In addition, we discuss ways to mitigate the computational complexity of the proposed models and conduct experiments in both inductive and transductive settings. Our findings demonstrate tha the proposed approaches provide comparable quality to modern methods.</description><subject>Apexes</subject><subject>Graph neural networks</subject><subject>Graph theory</subject><subject>Learning</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Multilayers</subject><subject>Tables (data)</subject><issn>1064-5624</issn><issn>1531-8362</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLAzEQhYMoWKs_wFvA82omye4mR2lrK9QKWs9LzE5qyna3Jluk_96UCh7E0zx473vMDCHXwG4BhLx7BVbIvOCSi5IBaHFCBpALyJQo-GnSyc4O_jm5iHHNmMw5YwNil92XCXWkE-e89dj2dI4mtL5d0c7R6WIRadfSmV99ZGO_wTb6rjUNfdo1vW_MHgPW9AW3AWNiTZ_ceACX5n3XmEDHpjeX5MyZJuLVzxySt4fJcjTL5s_Tx9H9PLO8UH1WKwlOKLCIuba1Qa2UM0qiNVK60hbIoTBCp1PymielSgeQOyGFKDV3Ykhujr3b0H3uMPbVutuFtG2suFa5limtUwqOKRu6GAO6ahv8xoR9Baw6_LL688vE8CMTU7ZdYfht_h_6BjhAdX0</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Medvedev, A. V.</creator><creator>Djakonov, A. G.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20231201</creationdate><title>Towards Efficient Learning of GNNs on High-Dimensional Multilayered Representations of Tabular Data</title><author>Medvedev, A. V. ; Djakonov, A. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-d841f381cee59cdae988fa84eca44f7c6e216a391065d26a387f115f3433792f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Apexes</topic><topic>Graph neural networks</topic><topic>Graph theory</topic><topic>Learning</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Multilayers</topic><topic>Tables (data)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Medvedev, A. V.</creatorcontrib><creatorcontrib>Djakonov, A. G.</creatorcontrib><collection>CrossRef</collection><jtitle>Doklady. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Medvedev, A. V.</au><au>Djakonov, A. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards Efficient Learning of GNNs on High-Dimensional Multilayered Representations of Tabular Data</atitle><jtitle>Doklady. Mathematics</jtitle><stitle>Dokl. Math</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>108</volume><issue>Suppl 2</issue><spage>S265</spage><epage>S271</epage><pages>S265-S271</pages><issn>1064-5624</issn><eissn>1531-8362</eissn><abstract>For prediction tasks using tabular data, it is possible to extract additional information about the target variable by examining the relationships between the objects. Specifically, if it is possible to receive agraph in which the objects are represented as vertices and the relationships are expressed as edges, then it is likely that the graph structure contains valuable information. Recent research has indicated that jointly training graph neural networks and gradient boostings on this type of data can increase the accuracy of predictions. This article proposes new methods for learning on tabular data that incorporates a graph structure, in an attempt to combine modern multilayer techniques for processing tabular data and graph neural networks. In addition, we discuss ways to mitigate the computational complexity of the proposed models and conduct experiments in both inductive and transductive settings. Our findings demonstrate tha the proposed approaches provide comparable quality to modern methods.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1064562423701193</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-5624 |
ispartof | Doklady. Mathematics, 2023-12, Vol.108 (Suppl 2), p.S265-S271 |
issn | 1064-5624 1531-8362 |
language | eng |
recordid | cdi_proquest_journals_2985941159 |
source | Springer Online Journals |
subjects | Apexes Graph neural networks Graph theory Learning Mathematics Mathematics and Statistics Multilayers Tables (data) |
title | Towards Efficient Learning of GNNs on High-Dimensional Multilayered Representations of Tabular Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A14%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20Efficient%20Learning%20of%20GNNs%20on%20High-Dimensional%20Multilayered%20Representations%20of%20Tabular%20Data&rft.jtitle=Doklady.%20Mathematics&rft.au=Medvedev,%20A.%20V.&rft.date=2023-12-01&rft.volume=108&rft.issue=Suppl%202&rft.spage=S265&rft.epage=S271&rft.pages=S265-S271&rft.issn=1064-5624&rft.eissn=1531-8362&rft_id=info:doi/10.1134/S1064562423701193&rft_dat=%3Cproquest_cross%3E2985941159%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2985941159&rft_id=info:pmid/&rfr_iscdi=true |