Safe Pretraining of Deep Language Models in a Synthetic Pseudo-Language
Absract This paper compares the pretraining of a transformer on natural language texts and on sentences of a synthetic pseudo-language. The artificial texts are automatically generated according to the rules written in a context-free grammar. The results of fine-tuning to complete tasks of the Russi...
Gespeichert in:
Veröffentlicht in: | Doklady. Mathematics 2023-12, Vol.108 (Suppl 2), p.S494-S502 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | S502 |
---|---|
container_issue | Suppl 2 |
container_start_page | S494 |
container_title | Doklady. Mathematics |
container_volume | 108 |
creator | Gorbacheva, T. E. Bondarenko, I. Y. |
description | Absract
This paper compares the pretraining of a transformer on natural language texts and on sentences of a synthetic pseudo-language. The artificial texts are automatically generated according to the rules written in a context-free grammar. The results of fine-tuning to complete tasks of the RussianSuperGLUE project statistically reliably showed that the models had the same scores. That is, the use of artificial texts facilitates the AI safety, because it can completely control the composition of the dataset. In addition, at the pretraining stage of a RoBERTa-like model, it is enough to learn recognizing only the syntactic and morphological patterns of the language, which can be successfully created in a fairly simple way, such as a context-free grammar. |
doi_str_mv | 10.1134/S1064562423701636 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2985940780</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2985940780</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-f8f4df57f82a9e51e6d13c2dad58f31e4f75753c3ea9e6117c280a757cd900ec3</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwFvA82om_zZ7lKpVqFionpeQTNYtdbcmu4d-e1OqeBBPM8z7vTfwCLkEdg0g5M0KmJZKc8lFyUALfUQmoAQURmh-nPcsF3v9lJyltGZMKs7YhMxXNiBdRhyibbu2a2gf6B3ili5s14y2Qfrce9wk2nbU0tWuG95xaB1dJhx9X_xQ5-Qk2E3Ci-85JW8P96-zx2LxMn-a3S4Kx7UZimCC9EGVwXBboQLUHoTj3nplggCUoVSlEk5gljVA6bhhNt-crxhDJ6bk6pC7jf3niGmo1_0Yu_yy5pVRlWSlYZmCA-Vin1LEUG9j-2HjrgZW7_uq__SVPfzgSZntGoy_yf-bvgAzCmso</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2985940780</pqid></control><display><type>article</type><title>Safe Pretraining of Deep Language Models in a Synthetic Pseudo-Language</title><source>Springer Online Journals Complete</source><creator>Gorbacheva, T. E. ; Bondarenko, I. Y.</creator><creatorcontrib>Gorbacheva, T. E. ; Bondarenko, I. Y.</creatorcontrib><description>Absract
This paper compares the pretraining of a transformer on natural language texts and on sentences of a synthetic pseudo-language. The artificial texts are automatically generated according to the rules written in a context-free grammar. The results of fine-tuning to complete tasks of the RussianSuperGLUE project statistically reliably showed that the models had the same scores. That is, the use of artificial texts facilitates the AI safety, because it can completely control the composition of the dataset. In addition, at the pretraining stage of a RoBERTa-like model, it is enough to learn recognizing only the syntactic and morphological patterns of the language, which can be successfully created in a fairly simple way, such as a context-free grammar.</description><identifier>ISSN: 1064-5624</identifier><identifier>EISSN: 1531-8362</identifier><identifier>DOI: 10.1134/S1064562423701636</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Context ; Mathematics ; Mathematics and Statistics ; Texts</subject><ispartof>Doklady. Mathematics, 2023-12, Vol.108 (Suppl 2), p.S494-S502</ispartof><rights>Pleiades Publishing, Ltd. 2023. ISSN 1064-5624, Doklady Mathematics, 2023, Vol. 108, Suppl. 2, pp. S494–S502. © Pleiades Publishing, Ltd., 2023. Russian Text © The Author(s), 2023, published in Doklady Rossiiskoi Akademii Nauk. Matematika, Informatika, Protsessy Upravleniya, 2023, Vol. 514, No. 2, pp. 375–384.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-f8f4df57f82a9e51e6d13c2dad58f31e4f75753c3ea9e6117c280a757cd900ec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1064562423701636$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1064562423701636$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Gorbacheva, T. E.</creatorcontrib><creatorcontrib>Bondarenko, I. Y.</creatorcontrib><title>Safe Pretraining of Deep Language Models in a Synthetic Pseudo-Language</title><title>Doklady. Mathematics</title><addtitle>Dokl. Math</addtitle><description>Absract
This paper compares the pretraining of a transformer on natural language texts and on sentences of a synthetic pseudo-language. The artificial texts are automatically generated according to the rules written in a context-free grammar. The results of fine-tuning to complete tasks of the RussianSuperGLUE project statistically reliably showed that the models had the same scores. That is, the use of artificial texts facilitates the AI safety, because it can completely control the composition of the dataset. In addition, at the pretraining stage of a RoBERTa-like model, it is enough to learn recognizing only the syntactic and morphological patterns of the language, which can be successfully created in a fairly simple way, such as a context-free grammar.</description><subject>Context</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Texts</subject><issn>1064-5624</issn><issn>1531-8362</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMoWKsfwFvA82om_zZ7lKpVqFionpeQTNYtdbcmu4d-e1OqeBBPM8z7vTfwCLkEdg0g5M0KmJZKc8lFyUALfUQmoAQURmh-nPcsF3v9lJyltGZMKs7YhMxXNiBdRhyibbu2a2gf6B3ili5s14y2Qfrce9wk2nbU0tWuG95xaB1dJhx9X_xQ5-Qk2E3Ci-85JW8P96-zx2LxMn-a3S4Kx7UZimCC9EGVwXBboQLUHoTj3nplggCUoVSlEk5gljVA6bhhNt-crxhDJ6bk6pC7jf3niGmo1_0Yu_yy5pVRlWSlYZmCA-Vin1LEUG9j-2HjrgZW7_uq__SVPfzgSZntGoy_yf-bvgAzCmso</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Gorbacheva, T. E.</creator><creator>Bondarenko, I. Y.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20231201</creationdate><title>Safe Pretraining of Deep Language Models in a Synthetic Pseudo-Language</title><author>Gorbacheva, T. E. ; Bondarenko, I. Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-f8f4df57f82a9e51e6d13c2dad58f31e4f75753c3ea9e6117c280a757cd900ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Context</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Texts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gorbacheva, T. E.</creatorcontrib><creatorcontrib>Bondarenko, I. Y.</creatorcontrib><collection>CrossRef</collection><jtitle>Doklady. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gorbacheva, T. E.</au><au>Bondarenko, I. Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Safe Pretraining of Deep Language Models in a Synthetic Pseudo-Language</atitle><jtitle>Doklady. Mathematics</jtitle><stitle>Dokl. Math</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>108</volume><issue>Suppl 2</issue><spage>S494</spage><epage>S502</epage><pages>S494-S502</pages><issn>1064-5624</issn><eissn>1531-8362</eissn><abstract>Absract
This paper compares the pretraining of a transformer on natural language texts and on sentences of a synthetic pseudo-language. The artificial texts are automatically generated according to the rules written in a context-free grammar. The results of fine-tuning to complete tasks of the RussianSuperGLUE project statistically reliably showed that the models had the same scores. That is, the use of artificial texts facilitates the AI safety, because it can completely control the composition of the dataset. In addition, at the pretraining stage of a RoBERTa-like model, it is enough to learn recognizing only the syntactic and morphological patterns of the language, which can be successfully created in a fairly simple way, such as a context-free grammar.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1064562423701636</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-5624 |
ispartof | Doklady. Mathematics, 2023-12, Vol.108 (Suppl 2), p.S494-S502 |
issn | 1064-5624 1531-8362 |
language | eng |
recordid | cdi_proquest_journals_2985940780 |
source | Springer Online Journals Complete |
subjects | Context Mathematics Mathematics and Statistics Texts |
title | Safe Pretraining of Deep Language Models in a Synthetic Pseudo-Language |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T16%3A09%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Safe%20Pretraining%20of%20Deep%20Language%20Models%20in%20a%20Synthetic%20Pseudo-Language&rft.jtitle=Doklady.%20Mathematics&rft.au=Gorbacheva,%20T.%20E.&rft.date=2023-12-01&rft.volume=108&rft.issue=Suppl%202&rft.spage=S494&rft.epage=S502&rft.pages=S494-S502&rft.issn=1064-5624&rft.eissn=1531-8362&rft_id=info:doi/10.1134/S1064562423701636&rft_dat=%3Cproquest_cross%3E2985940780%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2985940780&rft_id=info:pmid/&rfr_iscdi=true |