A simplified calculation for adaptive coefficients of finite-difference frequency-domain method

The finite-difference frequency domain (FDFD) method is widely applied for simulating seismic wavefields, and a key to achieving successful FDFD simulation is to construct FDFD coefficients that can effectively suppress numerical dispersion. Among the existing FDFD coefficients for seismic wavefield...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied geophysics 2023-09, Vol.20 (3), p.262-277
Hauptverfasser: Xu, Wen-Hao, Ba, Jing, Carcione, José Maria, Yang, Zhi-Fang, Yan, Xin-Fei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 277
container_issue 3
container_start_page 262
container_title Applied geophysics
container_volume 20
creator Xu, Wen-Hao
Ba, Jing
Carcione, José Maria
Yang, Zhi-Fang
Yan, Xin-Fei
description The finite-difference frequency domain (FDFD) method is widely applied for simulating seismic wavefields, and a key to achieving successful FDFD simulation is to construct FDFD coefficients that can effectively suppress numerical dispersion. Among the existing FDFD coefficients for seismic wavefield simulation, adaptive FDFD coefficients that vary with the number of wavelengths per grid can suppress numerical dispersion to the maximum extent. The current methods for calculating adaptive FDFD coefficients involve numerical integration, conjugate gradient (CG) optimization, sequential initial value selection, and smooth regularization, which are difficult to implement and inefficient in calculations. To simplify the calculation of adaptive FDFD coefficients and improve the corresponding computational efficiency, this paper proposes a new method for calculating adaptive FDFD coefficients. First, plane-wave solutions with different discrete propagation angles are substituted in the FDFD scheme, and the corresponding least-squares problem is constructed. As this problem is ill-conditioned and obtaining smooth adaptive FDFD coefficients by the conventional solving method based on normal equations is difficult, this paper proposes solving the least-squares problem by solving the corresponding overdetermined linear system of equations through QR matrix decomposition. Compared with the existing methods for calculating adaptive FDFD coefficients based on numerical integration, CG optimization, and sequential initial value selection, the proposed method allows for a simplified computational process and considerably higher computational efficiency. Numerical wavefield simulation results show that the adaptive-coefficient FDFD method based on QR matrix decomposition can achieve the same accuracy as those based on numerical integration, CG optimization, and sequential initial value selection while requiring less computation time.
doi_str_mv 10.1007/s11770-023-1045-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2985940616</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2985940616</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-a10286a9f1ec86ab07b19e0b9dd9258e55e70f68ccf3204dc891e21bcf4e40903</originalsourceid><addsrcrecordid>eNp1kE9LxDAUxIMouK5-AG8Bz9GXtE2b47L4Dxa86Dmk6YtmaZuadIX99kYqePI0c5iZ9_gRcs3hlgPUd4nzugYGomAcyoo1J2TFlSoYyKo5zV7WgtWqrs7JRUp7AFkIWa6I3tDkh6n3zmNHrentoTezDyN1IVLTmWn2X0htQOe89TjOiQZHnR_9jKzzzmHE0SJ1ET8P2R1ZFwbjRzrg_BG6S3LmTJ_w6lfX5O3h_nX7xHYvj8_bzY7ZgsuZGQ6ikUY5jjZrC3XLFUKruk6JqsGqwhqcbKx1hYCys43iKHhrXYklKCjW5GbZnWLIf6RZ78MhjvmkFqqpVAmSy5ziS8rGkFJEp6foBxOPmoP-4agXjjpz1D8cdZM7YumknB3fMf4t_1_6BtR5dsc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2985940616</pqid></control><display><type>article</type><title>A simplified calculation for adaptive coefficients of finite-difference frequency-domain method</title><source>SpringerLink Journals</source><source>Alma/SFX Local Collection</source><creator>Xu, Wen-Hao ; Ba, Jing ; Carcione, José Maria ; Yang, Zhi-Fang ; Yan, Xin-Fei</creator><creatorcontrib>Xu, Wen-Hao ; Ba, Jing ; Carcione, José Maria ; Yang, Zhi-Fang ; Yan, Xin-Fei</creatorcontrib><description>The finite-difference frequency domain (FDFD) method is widely applied for simulating seismic wavefields, and a key to achieving successful FDFD simulation is to construct FDFD coefficients that can effectively suppress numerical dispersion. Among the existing FDFD coefficients for seismic wavefield simulation, adaptive FDFD coefficients that vary with the number of wavelengths per grid can suppress numerical dispersion to the maximum extent. The current methods for calculating adaptive FDFD coefficients involve numerical integration, conjugate gradient (CG) optimization, sequential initial value selection, and smooth regularization, which are difficult to implement and inefficient in calculations. To simplify the calculation of adaptive FDFD coefficients and improve the corresponding computational efficiency, this paper proposes a new method for calculating adaptive FDFD coefficients. First, plane-wave solutions with different discrete propagation angles are substituted in the FDFD scheme, and the corresponding least-squares problem is constructed. As this problem is ill-conditioned and obtaining smooth adaptive FDFD coefficients by the conventional solving method based on normal equations is difficult, this paper proposes solving the least-squares problem by solving the corresponding overdetermined linear system of equations through QR matrix decomposition. Compared with the existing methods for calculating adaptive FDFD coefficients based on numerical integration, CG optimization, and sequential initial value selection, the proposed method allows for a simplified computational process and considerably higher computational efficiency. Numerical wavefield simulation results show that the adaptive-coefficient FDFD method based on QR matrix decomposition can achieve the same accuracy as those based on numerical integration, CG optimization, and sequential initial value selection while requiring less computation time.</description><identifier>ISSN: 1672-7975</identifier><identifier>EISSN: 1993-0658</identifier><identifier>DOI: 10.1007/s11770-023-1045-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Coefficients ; Computation ; Computational efficiency ; Computer applications ; Computing time ; Decomposition ; Dispersion ; Earth and Environmental Science ; Earth Sciences ; Finite difference method ; Frequency domain analysis ; Geophysics/Geodesy ; Geotechnical Engineering &amp; Applied Earth Sciences ; Integration ; Least squares method ; Mathematical models ; Numerical integration ; Optimization ; Plane waves ; Regularization ; Seismic Modeling and Wave Propagation ; Simulation ; Wavelengths</subject><ispartof>Applied geophysics, 2023-09, Vol.20 (3), p.262-277</ispartof><rights>The Editorial Department of APPLIED GEOPHYSICS 2023</rights><rights>The Editorial Department of APPLIED GEOPHYSICS 2023.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-a10286a9f1ec86ab07b19e0b9dd9258e55e70f68ccf3204dc891e21bcf4e40903</citedby><cites>FETCH-LOGICAL-c316t-a10286a9f1ec86ab07b19e0b9dd9258e55e70f68ccf3204dc891e21bcf4e40903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11770-023-1045-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11770-023-1045-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Xu, Wen-Hao</creatorcontrib><creatorcontrib>Ba, Jing</creatorcontrib><creatorcontrib>Carcione, José Maria</creatorcontrib><creatorcontrib>Yang, Zhi-Fang</creatorcontrib><creatorcontrib>Yan, Xin-Fei</creatorcontrib><title>A simplified calculation for adaptive coefficients of finite-difference frequency-domain method</title><title>Applied geophysics</title><addtitle>Appl. Geophys</addtitle><description>The finite-difference frequency domain (FDFD) method is widely applied for simulating seismic wavefields, and a key to achieving successful FDFD simulation is to construct FDFD coefficients that can effectively suppress numerical dispersion. Among the existing FDFD coefficients for seismic wavefield simulation, adaptive FDFD coefficients that vary with the number of wavelengths per grid can suppress numerical dispersion to the maximum extent. The current methods for calculating adaptive FDFD coefficients involve numerical integration, conjugate gradient (CG) optimization, sequential initial value selection, and smooth regularization, which are difficult to implement and inefficient in calculations. To simplify the calculation of adaptive FDFD coefficients and improve the corresponding computational efficiency, this paper proposes a new method for calculating adaptive FDFD coefficients. First, plane-wave solutions with different discrete propagation angles are substituted in the FDFD scheme, and the corresponding least-squares problem is constructed. As this problem is ill-conditioned and obtaining smooth adaptive FDFD coefficients by the conventional solving method based on normal equations is difficult, this paper proposes solving the least-squares problem by solving the corresponding overdetermined linear system of equations through QR matrix decomposition. Compared with the existing methods for calculating adaptive FDFD coefficients based on numerical integration, CG optimization, and sequential initial value selection, the proposed method allows for a simplified computational process and considerably higher computational efficiency. Numerical wavefield simulation results show that the adaptive-coefficient FDFD method based on QR matrix decomposition can achieve the same accuracy as those based on numerical integration, CG optimization, and sequential initial value selection while requiring less computation time.</description><subject>Coefficients</subject><subject>Computation</subject><subject>Computational efficiency</subject><subject>Computer applications</subject><subject>Computing time</subject><subject>Decomposition</subject><subject>Dispersion</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Finite difference method</subject><subject>Frequency domain analysis</subject><subject>Geophysics/Geodesy</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>Integration</subject><subject>Least squares method</subject><subject>Mathematical models</subject><subject>Numerical integration</subject><subject>Optimization</subject><subject>Plane waves</subject><subject>Regularization</subject><subject>Seismic Modeling and Wave Propagation</subject><subject>Simulation</subject><subject>Wavelengths</subject><issn>1672-7975</issn><issn>1993-0658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LxDAUxIMouK5-AG8Bz9GXtE2b47L4Dxa86Dmk6YtmaZuadIX99kYqePI0c5iZ9_gRcs3hlgPUd4nzugYGomAcyoo1J2TFlSoYyKo5zV7WgtWqrs7JRUp7AFkIWa6I3tDkh6n3zmNHrentoTezDyN1IVLTmWn2X0htQOe89TjOiQZHnR_9jKzzzmHE0SJ1ET8P2R1ZFwbjRzrg_BG6S3LmTJ_w6lfX5O3h_nX7xHYvj8_bzY7ZgsuZGQ6ikUY5jjZrC3XLFUKruk6JqsGqwhqcbKx1hYCys43iKHhrXYklKCjW5GbZnWLIf6RZ78MhjvmkFqqpVAmSy5ziS8rGkFJEp6foBxOPmoP-4agXjjpz1D8cdZM7YumknB3fMf4t_1_6BtR5dsc</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Xu, Wen-Hao</creator><creator>Ba, Jing</creator><creator>Carcione, José Maria</creator><creator>Yang, Zhi-Fang</creator><creator>Yan, Xin-Fei</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope></search><sort><creationdate>20230901</creationdate><title>A simplified calculation for adaptive coefficients of finite-difference frequency-domain method</title><author>Xu, Wen-Hao ; Ba, Jing ; Carcione, José Maria ; Yang, Zhi-Fang ; Yan, Xin-Fei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-a10286a9f1ec86ab07b19e0b9dd9258e55e70f68ccf3204dc891e21bcf4e40903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Coefficients</topic><topic>Computation</topic><topic>Computational efficiency</topic><topic>Computer applications</topic><topic>Computing time</topic><topic>Decomposition</topic><topic>Dispersion</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Finite difference method</topic><topic>Frequency domain analysis</topic><topic>Geophysics/Geodesy</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>Integration</topic><topic>Least squares method</topic><topic>Mathematical models</topic><topic>Numerical integration</topic><topic>Optimization</topic><topic>Plane waves</topic><topic>Regularization</topic><topic>Seismic Modeling and Wave Propagation</topic><topic>Simulation</topic><topic>Wavelengths</topic><toplevel>online_resources</toplevel><creatorcontrib>Xu, Wen-Hao</creatorcontrib><creatorcontrib>Ba, Jing</creatorcontrib><creatorcontrib>Carcione, José Maria</creatorcontrib><creatorcontrib>Yang, Zhi-Fang</creatorcontrib><creatorcontrib>Yan, Xin-Fei</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied geophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Wen-Hao</au><au>Ba, Jing</au><au>Carcione, José Maria</au><au>Yang, Zhi-Fang</au><au>Yan, Xin-Fei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A simplified calculation for adaptive coefficients of finite-difference frequency-domain method</atitle><jtitle>Applied geophysics</jtitle><stitle>Appl. Geophys</stitle><date>2023-09-01</date><risdate>2023</risdate><volume>20</volume><issue>3</issue><spage>262</spage><epage>277</epage><pages>262-277</pages><issn>1672-7975</issn><eissn>1993-0658</eissn><abstract>The finite-difference frequency domain (FDFD) method is widely applied for simulating seismic wavefields, and a key to achieving successful FDFD simulation is to construct FDFD coefficients that can effectively suppress numerical dispersion. Among the existing FDFD coefficients for seismic wavefield simulation, adaptive FDFD coefficients that vary with the number of wavelengths per grid can suppress numerical dispersion to the maximum extent. The current methods for calculating adaptive FDFD coefficients involve numerical integration, conjugate gradient (CG) optimization, sequential initial value selection, and smooth regularization, which are difficult to implement and inefficient in calculations. To simplify the calculation of adaptive FDFD coefficients and improve the corresponding computational efficiency, this paper proposes a new method for calculating adaptive FDFD coefficients. First, plane-wave solutions with different discrete propagation angles are substituted in the FDFD scheme, and the corresponding least-squares problem is constructed. As this problem is ill-conditioned and obtaining smooth adaptive FDFD coefficients by the conventional solving method based on normal equations is difficult, this paper proposes solving the least-squares problem by solving the corresponding overdetermined linear system of equations through QR matrix decomposition. Compared with the existing methods for calculating adaptive FDFD coefficients based on numerical integration, CG optimization, and sequential initial value selection, the proposed method allows for a simplified computational process and considerably higher computational efficiency. Numerical wavefield simulation results show that the adaptive-coefficient FDFD method based on QR matrix decomposition can achieve the same accuracy as those based on numerical integration, CG optimization, and sequential initial value selection while requiring less computation time.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11770-023-1045-8</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1672-7975
ispartof Applied geophysics, 2023-09, Vol.20 (3), p.262-277
issn 1672-7975
1993-0658
language eng
recordid cdi_proquest_journals_2985940616
source SpringerLink Journals; Alma/SFX Local Collection
subjects Coefficients
Computation
Computational efficiency
Computer applications
Computing time
Decomposition
Dispersion
Earth and Environmental Science
Earth Sciences
Finite difference method
Frequency domain analysis
Geophysics/Geodesy
Geotechnical Engineering & Applied Earth Sciences
Integration
Least squares method
Mathematical models
Numerical integration
Optimization
Plane waves
Regularization
Seismic Modeling and Wave Propagation
Simulation
Wavelengths
title A simplified calculation for adaptive coefficients of finite-difference frequency-domain method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T02%3A27%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20simplified%20calculation%20for%20adaptive%20coefficients%20of%20finite-difference%20frequency-domain%20method&rft.jtitle=Applied%20geophysics&rft.au=Xu,%20Wen-Hao&rft.date=2023-09-01&rft.volume=20&rft.issue=3&rft.spage=262&rft.epage=277&rft.pages=262-277&rft.issn=1672-7975&rft.eissn=1993-0658&rft_id=info:doi/10.1007/s11770-023-1045-8&rft_dat=%3Cproquest_cross%3E2985940616%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2985940616&rft_id=info:pmid/&rfr_iscdi=true