Enhancing satellite clock bias prediction in BDS with LSTM-attention model
Satellite clock bias (SCB) is a critical factor influencing the accuracy of real-time precise point positioning. Nevertheless, the utilization of real-time service products, as supplied by the International GNSS Service, may be vulnerable to interruptions or network failures. In specific situations,...
Gespeichert in:
Veröffentlicht in: | GPS solutions 2024-04, Vol.28 (2), p.92, Article 92 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 92 |
container_title | GPS solutions |
container_volume | 28 |
creator | Cai, Chenglin Liu, Mingyuan Li, Pinchun Li, Zexian Lv, Kaihui |
description | Satellite clock bias (SCB) is a critical factor influencing the accuracy of real-time precise point positioning. Nevertheless, the utilization of real-time service products, as supplied by the International GNSS Service, may be vulnerable to interruptions or network failures. In specific situations, users may encounter difficulties in obtaining accurate real-time corrections. Our research presents an enhanced predictive model for SCB using a long short-term memory (LSTM) neural network fused with a Self-Attention mechanism to address this challenge. This fusion enables the model to effectively balance global attention and localized feature capture, ultimately enhancing prediction accuracy and stability. We compared and analyzed our proposed model with convolutional neural network (CNN) and LSTM models. This analysis encompasses an assessment of the model's strengths and suitability for predicting SCB within the BeiDou navigation system, considering diverse satellites, orbits, and atomic clocks. Our results exhibit a substantial improvement in predictive accuracy through the LSTM-Attention model. There has been an improvement of 49.67 and 62.51% compared to the CNN and LSTM models in the 12-h prediction task. In the case of the 24-h prediction task, the improvements escalated to 68.41 and 71.16%, respectively. |
doi_str_mv | 10.1007/s10291-024-01640-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2984029657</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2984029657</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-3ff93e2913d9a4c28b5d3046ababfa70fe022ed0496413291ddfe9771c2001173</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wssTaMH3l4CaW8VMSiZW05jtO6pE6JXSH-HrdBYsdqRppzZ0YHoUsK1xSguAkUmKQEmCBAcwGkPEIjmjFKaFnmx6mHEkjGCzhFZyGsARhIKUboZepX2hvnlzjoaNvWRYtN25kPXDkd8La3tTPRdR47j-_u5_jLxRWezRevRMdo_WG06WrbnqOTRrfBXvzWMXp_mC4mT2T29vg8uZ0RwwqIhDeN5DZ9y2uphWFlldUcRK4rXTW6gMYCY7YGIXNBeeLqurGyKKhhAJQWfIyuhr3bvvvc2RDVutv1Pp1UTJYiicizPcUGyvRdCL1t1LZ3G91_Kwpq70wNzlRypg7OVJlCfAiFBPul7f9W_5P6AfuubaM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2984029657</pqid></control><display><type>article</type><title>Enhancing satellite clock bias prediction in BDS with LSTM-attention model</title><source>SpringerLink Journals - AutoHoldings</source><creator>Cai, Chenglin ; Liu, Mingyuan ; Li, Pinchun ; Li, Zexian ; Lv, Kaihui</creator><creatorcontrib>Cai, Chenglin ; Liu, Mingyuan ; Li, Pinchun ; Li, Zexian ; Lv, Kaihui</creatorcontrib><description>Satellite clock bias (SCB) is a critical factor influencing the accuracy of real-time precise point positioning. Nevertheless, the utilization of real-time service products, as supplied by the International GNSS Service, may be vulnerable to interruptions or network failures. In specific situations, users may encounter difficulties in obtaining accurate real-time corrections. Our research presents an enhanced predictive model for SCB using a long short-term memory (LSTM) neural network fused with a Self-Attention mechanism to address this challenge. This fusion enables the model to effectively balance global attention and localized feature capture, ultimately enhancing prediction accuracy and stability. We compared and analyzed our proposed model with convolutional neural network (CNN) and LSTM models. This analysis encompasses an assessment of the model's strengths and suitability for predicting SCB within the BeiDou navigation system, considering diverse satellites, orbits, and atomic clocks. Our results exhibit a substantial improvement in predictive accuracy through the LSTM-Attention model. There has been an improvement of 49.67 and 62.51% compared to the CNN and LSTM models in the 12-h prediction task. In the case of the 24-h prediction task, the improvements escalated to 68.41 and 71.16%, respectively.</description><identifier>ISSN: 1080-5370</identifier><identifier>EISSN: 1521-1886</identifier><identifier>DOI: 10.1007/s10291-024-01640-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accuracy ; Artificial Intelligence Applications in GNSS ; Artificial neural networks ; Atmospheric Sciences ; Atomic clocks ; Automotive Engineering ; BeiDou Navigation Satellite System ; Bias ; Earth and Environmental Science ; Earth Sciences ; Electrical Engineering ; Geophysics/Geodesy ; Navigation systems ; Neural networks ; Original Article ; Prediction models ; Real time ; Satellite navigation systems ; Satellites ; Space Exploration and Astronautics ; Space Sciences (including Extraterrestrial Physics ; Stability analysis</subject><ispartof>GPS solutions, 2024-04, Vol.28 (2), p.92, Article 92</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-3ff93e2913d9a4c28b5d3046ababfa70fe022ed0496413291ddfe9771c2001173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10291-024-01640-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10291-024-01640-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Cai, Chenglin</creatorcontrib><creatorcontrib>Liu, Mingyuan</creatorcontrib><creatorcontrib>Li, Pinchun</creatorcontrib><creatorcontrib>Li, Zexian</creatorcontrib><creatorcontrib>Lv, Kaihui</creatorcontrib><title>Enhancing satellite clock bias prediction in BDS with LSTM-attention model</title><title>GPS solutions</title><addtitle>GPS Solut</addtitle><description>Satellite clock bias (SCB) is a critical factor influencing the accuracy of real-time precise point positioning. Nevertheless, the utilization of real-time service products, as supplied by the International GNSS Service, may be vulnerable to interruptions or network failures. In specific situations, users may encounter difficulties in obtaining accurate real-time corrections. Our research presents an enhanced predictive model for SCB using a long short-term memory (LSTM) neural network fused with a Self-Attention mechanism to address this challenge. This fusion enables the model to effectively balance global attention and localized feature capture, ultimately enhancing prediction accuracy and stability. We compared and analyzed our proposed model with convolutional neural network (CNN) and LSTM models. This analysis encompasses an assessment of the model's strengths and suitability for predicting SCB within the BeiDou navigation system, considering diverse satellites, orbits, and atomic clocks. Our results exhibit a substantial improvement in predictive accuracy through the LSTM-Attention model. There has been an improvement of 49.67 and 62.51% compared to the CNN and LSTM models in the 12-h prediction task. In the case of the 24-h prediction task, the improvements escalated to 68.41 and 71.16%, respectively.</description><subject>Accuracy</subject><subject>Artificial Intelligence Applications in GNSS</subject><subject>Artificial neural networks</subject><subject>Atmospheric Sciences</subject><subject>Atomic clocks</subject><subject>Automotive Engineering</subject><subject>BeiDou Navigation Satellite System</subject><subject>Bias</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Electrical Engineering</subject><subject>Geophysics/Geodesy</subject><subject>Navigation systems</subject><subject>Neural networks</subject><subject>Original Article</subject><subject>Prediction models</subject><subject>Real time</subject><subject>Satellite navigation systems</subject><subject>Satellites</subject><subject>Space Exploration and Astronautics</subject><subject>Space Sciences (including Extraterrestrial Physics</subject><subject>Stability analysis</subject><issn>1080-5370</issn><issn>1521-1886</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwA6wssTaMH3l4CaW8VMSiZW05jtO6pE6JXSH-HrdBYsdqRppzZ0YHoUsK1xSguAkUmKQEmCBAcwGkPEIjmjFKaFnmx6mHEkjGCzhFZyGsARhIKUboZepX2hvnlzjoaNvWRYtN25kPXDkd8La3tTPRdR47j-_u5_jLxRWezRevRMdo_WG06WrbnqOTRrfBXvzWMXp_mC4mT2T29vg8uZ0RwwqIhDeN5DZ9y2uphWFlldUcRK4rXTW6gMYCY7YGIXNBeeLqurGyKKhhAJQWfIyuhr3bvvvc2RDVutv1Pp1UTJYiicizPcUGyvRdCL1t1LZ3G91_Kwpq70wNzlRypg7OVJlCfAiFBPul7f9W_5P6AfuubaM</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Cai, Chenglin</creator><creator>Liu, Mingyuan</creator><creator>Li, Pinchun</creator><creator>Li, Zexian</creator><creator>Lv, Kaihui</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20240401</creationdate><title>Enhancing satellite clock bias prediction in BDS with LSTM-attention model</title><author>Cai, Chenglin ; Liu, Mingyuan ; Li, Pinchun ; Li, Zexian ; Lv, Kaihui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-3ff93e2913d9a4c28b5d3046ababfa70fe022ed0496413291ddfe9771c2001173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Artificial Intelligence Applications in GNSS</topic><topic>Artificial neural networks</topic><topic>Atmospheric Sciences</topic><topic>Atomic clocks</topic><topic>Automotive Engineering</topic><topic>BeiDou Navigation Satellite System</topic><topic>Bias</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Electrical Engineering</topic><topic>Geophysics/Geodesy</topic><topic>Navigation systems</topic><topic>Neural networks</topic><topic>Original Article</topic><topic>Prediction models</topic><topic>Real time</topic><topic>Satellite navigation systems</topic><topic>Satellites</topic><topic>Space Exploration and Astronautics</topic><topic>Space Sciences (including Extraterrestrial Physics</topic><topic>Stability analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cai, Chenglin</creatorcontrib><creatorcontrib>Liu, Mingyuan</creatorcontrib><creatorcontrib>Li, Pinchun</creatorcontrib><creatorcontrib>Li, Zexian</creatorcontrib><creatorcontrib>Lv, Kaihui</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>GPS solutions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cai, Chenglin</au><au>Liu, Mingyuan</au><au>Li, Pinchun</au><au>Li, Zexian</au><au>Lv, Kaihui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing satellite clock bias prediction in BDS with LSTM-attention model</atitle><jtitle>GPS solutions</jtitle><stitle>GPS Solut</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>28</volume><issue>2</issue><spage>92</spage><pages>92-</pages><artnum>92</artnum><issn>1080-5370</issn><eissn>1521-1886</eissn><abstract>Satellite clock bias (SCB) is a critical factor influencing the accuracy of real-time precise point positioning. Nevertheless, the utilization of real-time service products, as supplied by the International GNSS Service, may be vulnerable to interruptions or network failures. In specific situations, users may encounter difficulties in obtaining accurate real-time corrections. Our research presents an enhanced predictive model for SCB using a long short-term memory (LSTM) neural network fused with a Self-Attention mechanism to address this challenge. This fusion enables the model to effectively balance global attention and localized feature capture, ultimately enhancing prediction accuracy and stability. We compared and analyzed our proposed model with convolutional neural network (CNN) and LSTM models. This analysis encompasses an assessment of the model's strengths and suitability for predicting SCB within the BeiDou navigation system, considering diverse satellites, orbits, and atomic clocks. Our results exhibit a substantial improvement in predictive accuracy through the LSTM-Attention model. There has been an improvement of 49.67 and 62.51% compared to the CNN and LSTM models in the 12-h prediction task. In the case of the 24-h prediction task, the improvements escalated to 68.41 and 71.16%, respectively.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10291-024-01640-8</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1080-5370 |
ispartof | GPS solutions, 2024-04, Vol.28 (2), p.92, Article 92 |
issn | 1080-5370 1521-1886 |
language | eng |
recordid | cdi_proquest_journals_2984029657 |
source | SpringerLink Journals - AutoHoldings |
subjects | Accuracy Artificial Intelligence Applications in GNSS Artificial neural networks Atmospheric Sciences Atomic clocks Automotive Engineering BeiDou Navigation Satellite System Bias Earth and Environmental Science Earth Sciences Electrical Engineering Geophysics/Geodesy Navigation systems Neural networks Original Article Prediction models Real time Satellite navigation systems Satellites Space Exploration and Astronautics Space Sciences (including Extraterrestrial Physics Stability analysis |
title | Enhancing satellite clock bias prediction in BDS with LSTM-attention model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A38%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20satellite%20clock%20bias%20prediction%20in%20BDS%20with%20LSTM-attention%20model&rft.jtitle=GPS%20solutions&rft.au=Cai,%20Chenglin&rft.date=2024-04-01&rft.volume=28&rft.issue=2&rft.spage=92&rft.pages=92-&rft.artnum=92&rft.issn=1080-5370&rft.eissn=1521-1886&rft_id=info:doi/10.1007/s10291-024-01640-8&rft_dat=%3Cproquest_cross%3E2984029657%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2984029657&rft_id=info:pmid/&rfr_iscdi=true |