Enhancing satellite clock bias prediction in BDS with LSTM-attention model

Satellite clock bias (SCB) is a critical factor influencing the accuracy of real-time precise point positioning. Nevertheless, the utilization of real-time service products, as supplied by the International GNSS Service, may be vulnerable to interruptions or network failures. In specific situations,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:GPS solutions 2024-04, Vol.28 (2), p.92, Article 92
Hauptverfasser: Cai, Chenglin, Liu, Mingyuan, Li, Pinchun, Li, Zexian, Lv, Kaihui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 92
container_title GPS solutions
container_volume 28
creator Cai, Chenglin
Liu, Mingyuan
Li, Pinchun
Li, Zexian
Lv, Kaihui
description Satellite clock bias (SCB) is a critical factor influencing the accuracy of real-time precise point positioning. Nevertheless, the utilization of real-time service products, as supplied by the International GNSS Service, may be vulnerable to interruptions or network failures. In specific situations, users may encounter difficulties in obtaining accurate real-time corrections. Our research presents an enhanced predictive model for SCB using a long short-term memory (LSTM) neural network fused with a Self-Attention mechanism to address this challenge. This fusion enables the model to effectively balance global attention and localized feature capture, ultimately enhancing prediction accuracy and stability. We compared and analyzed our proposed model with convolutional neural network (CNN) and LSTM models. This analysis encompasses an assessment of the model's strengths and suitability for predicting SCB within the BeiDou navigation system, considering diverse satellites, orbits, and atomic clocks. Our results exhibit a substantial improvement in predictive accuracy through the LSTM-Attention model. There has been an improvement of 49.67 and 62.51% compared to the CNN and LSTM models in the 12-h prediction task. In the case of the 24-h prediction task, the improvements escalated to 68.41 and 71.16%, respectively.
doi_str_mv 10.1007/s10291-024-01640-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2984029657</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2984029657</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-3ff93e2913d9a4c28b5d3046ababfa70fe022ed0496413291ddfe9771c2001173</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wssTaMH3l4CaW8VMSiZW05jtO6pE6JXSH-HrdBYsdqRppzZ0YHoUsK1xSguAkUmKQEmCBAcwGkPEIjmjFKaFnmx6mHEkjGCzhFZyGsARhIKUboZepX2hvnlzjoaNvWRYtN25kPXDkd8La3tTPRdR47j-_u5_jLxRWezRevRMdo_WG06WrbnqOTRrfBXvzWMXp_mC4mT2T29vg8uZ0RwwqIhDeN5DZ9y2uphWFlldUcRK4rXTW6gMYCY7YGIXNBeeLqurGyKKhhAJQWfIyuhr3bvvvc2RDVutv1Pp1UTJYiicizPcUGyvRdCL1t1LZ3G91_Kwpq70wNzlRypg7OVJlCfAiFBPul7f9W_5P6AfuubaM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2984029657</pqid></control><display><type>article</type><title>Enhancing satellite clock bias prediction in BDS with LSTM-attention model</title><source>SpringerLink Journals - AutoHoldings</source><creator>Cai, Chenglin ; Liu, Mingyuan ; Li, Pinchun ; Li, Zexian ; Lv, Kaihui</creator><creatorcontrib>Cai, Chenglin ; Liu, Mingyuan ; Li, Pinchun ; Li, Zexian ; Lv, Kaihui</creatorcontrib><description>Satellite clock bias (SCB) is a critical factor influencing the accuracy of real-time precise point positioning. Nevertheless, the utilization of real-time service products, as supplied by the International GNSS Service, may be vulnerable to interruptions or network failures. In specific situations, users may encounter difficulties in obtaining accurate real-time corrections. Our research presents an enhanced predictive model for SCB using a long short-term memory (LSTM) neural network fused with a Self-Attention mechanism to address this challenge. This fusion enables the model to effectively balance global attention and localized feature capture, ultimately enhancing prediction accuracy and stability. We compared and analyzed our proposed model with convolutional neural network (CNN) and LSTM models. This analysis encompasses an assessment of the model's strengths and suitability for predicting SCB within the BeiDou navigation system, considering diverse satellites, orbits, and atomic clocks. Our results exhibit a substantial improvement in predictive accuracy through the LSTM-Attention model. There has been an improvement of 49.67 and 62.51% compared to the CNN and LSTM models in the 12-h prediction task. In the case of the 24-h prediction task, the improvements escalated to 68.41 and 71.16%, respectively.</description><identifier>ISSN: 1080-5370</identifier><identifier>EISSN: 1521-1886</identifier><identifier>DOI: 10.1007/s10291-024-01640-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accuracy ; Artificial Intelligence Applications in GNSS ; Artificial neural networks ; Atmospheric Sciences ; Atomic clocks ; Automotive Engineering ; BeiDou Navigation Satellite System ; Bias ; Earth and Environmental Science ; Earth Sciences ; Electrical Engineering ; Geophysics/Geodesy ; Navigation systems ; Neural networks ; Original Article ; Prediction models ; Real time ; Satellite navigation systems ; Satellites ; Space Exploration and Astronautics ; Space Sciences (including Extraterrestrial Physics ; Stability analysis</subject><ispartof>GPS solutions, 2024-04, Vol.28 (2), p.92, Article 92</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-3ff93e2913d9a4c28b5d3046ababfa70fe022ed0496413291ddfe9771c2001173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10291-024-01640-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10291-024-01640-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Cai, Chenglin</creatorcontrib><creatorcontrib>Liu, Mingyuan</creatorcontrib><creatorcontrib>Li, Pinchun</creatorcontrib><creatorcontrib>Li, Zexian</creatorcontrib><creatorcontrib>Lv, Kaihui</creatorcontrib><title>Enhancing satellite clock bias prediction in BDS with LSTM-attention model</title><title>GPS solutions</title><addtitle>GPS Solut</addtitle><description>Satellite clock bias (SCB) is a critical factor influencing the accuracy of real-time precise point positioning. Nevertheless, the utilization of real-time service products, as supplied by the International GNSS Service, may be vulnerable to interruptions or network failures. In specific situations, users may encounter difficulties in obtaining accurate real-time corrections. Our research presents an enhanced predictive model for SCB using a long short-term memory (LSTM) neural network fused with a Self-Attention mechanism to address this challenge. This fusion enables the model to effectively balance global attention and localized feature capture, ultimately enhancing prediction accuracy and stability. We compared and analyzed our proposed model with convolutional neural network (CNN) and LSTM models. This analysis encompasses an assessment of the model's strengths and suitability for predicting SCB within the BeiDou navigation system, considering diverse satellites, orbits, and atomic clocks. Our results exhibit a substantial improvement in predictive accuracy through the LSTM-Attention model. There has been an improvement of 49.67 and 62.51% compared to the CNN and LSTM models in the 12-h prediction task. In the case of the 24-h prediction task, the improvements escalated to 68.41 and 71.16%, respectively.</description><subject>Accuracy</subject><subject>Artificial Intelligence Applications in GNSS</subject><subject>Artificial neural networks</subject><subject>Atmospheric Sciences</subject><subject>Atomic clocks</subject><subject>Automotive Engineering</subject><subject>BeiDou Navigation Satellite System</subject><subject>Bias</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Electrical Engineering</subject><subject>Geophysics/Geodesy</subject><subject>Navigation systems</subject><subject>Neural networks</subject><subject>Original Article</subject><subject>Prediction models</subject><subject>Real time</subject><subject>Satellite navigation systems</subject><subject>Satellites</subject><subject>Space Exploration and Astronautics</subject><subject>Space Sciences (including Extraterrestrial Physics</subject><subject>Stability analysis</subject><issn>1080-5370</issn><issn>1521-1886</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwA6wssTaMH3l4CaW8VMSiZW05jtO6pE6JXSH-HrdBYsdqRppzZ0YHoUsK1xSguAkUmKQEmCBAcwGkPEIjmjFKaFnmx6mHEkjGCzhFZyGsARhIKUboZepX2hvnlzjoaNvWRYtN25kPXDkd8La3tTPRdR47j-_u5_jLxRWezRevRMdo_WG06WrbnqOTRrfBXvzWMXp_mC4mT2T29vg8uZ0RwwqIhDeN5DZ9y2uphWFlldUcRK4rXTW6gMYCY7YGIXNBeeLqurGyKKhhAJQWfIyuhr3bvvvc2RDVutv1Pp1UTJYiicizPcUGyvRdCL1t1LZ3G91_Kwpq70wNzlRypg7OVJlCfAiFBPul7f9W_5P6AfuubaM</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Cai, Chenglin</creator><creator>Liu, Mingyuan</creator><creator>Li, Pinchun</creator><creator>Li, Zexian</creator><creator>Lv, Kaihui</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20240401</creationdate><title>Enhancing satellite clock bias prediction in BDS with LSTM-attention model</title><author>Cai, Chenglin ; Liu, Mingyuan ; Li, Pinchun ; Li, Zexian ; Lv, Kaihui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-3ff93e2913d9a4c28b5d3046ababfa70fe022ed0496413291ddfe9771c2001173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Artificial Intelligence Applications in GNSS</topic><topic>Artificial neural networks</topic><topic>Atmospheric Sciences</topic><topic>Atomic clocks</topic><topic>Automotive Engineering</topic><topic>BeiDou Navigation Satellite System</topic><topic>Bias</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Electrical Engineering</topic><topic>Geophysics/Geodesy</topic><topic>Navigation systems</topic><topic>Neural networks</topic><topic>Original Article</topic><topic>Prediction models</topic><topic>Real time</topic><topic>Satellite navigation systems</topic><topic>Satellites</topic><topic>Space Exploration and Astronautics</topic><topic>Space Sciences (including Extraterrestrial Physics</topic><topic>Stability analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cai, Chenglin</creatorcontrib><creatorcontrib>Liu, Mingyuan</creatorcontrib><creatorcontrib>Li, Pinchun</creatorcontrib><creatorcontrib>Li, Zexian</creatorcontrib><creatorcontrib>Lv, Kaihui</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>GPS solutions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cai, Chenglin</au><au>Liu, Mingyuan</au><au>Li, Pinchun</au><au>Li, Zexian</au><au>Lv, Kaihui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing satellite clock bias prediction in BDS with LSTM-attention model</atitle><jtitle>GPS solutions</jtitle><stitle>GPS Solut</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>28</volume><issue>2</issue><spage>92</spage><pages>92-</pages><artnum>92</artnum><issn>1080-5370</issn><eissn>1521-1886</eissn><abstract>Satellite clock bias (SCB) is a critical factor influencing the accuracy of real-time precise point positioning. Nevertheless, the utilization of real-time service products, as supplied by the International GNSS Service, may be vulnerable to interruptions or network failures. In specific situations, users may encounter difficulties in obtaining accurate real-time corrections. Our research presents an enhanced predictive model for SCB using a long short-term memory (LSTM) neural network fused with a Self-Attention mechanism to address this challenge. This fusion enables the model to effectively balance global attention and localized feature capture, ultimately enhancing prediction accuracy and stability. We compared and analyzed our proposed model with convolutional neural network (CNN) and LSTM models. This analysis encompasses an assessment of the model's strengths and suitability for predicting SCB within the BeiDou navigation system, considering diverse satellites, orbits, and atomic clocks. Our results exhibit a substantial improvement in predictive accuracy through the LSTM-Attention model. There has been an improvement of 49.67 and 62.51% compared to the CNN and LSTM models in the 12-h prediction task. In the case of the 24-h prediction task, the improvements escalated to 68.41 and 71.16%, respectively.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10291-024-01640-8</doi></addata></record>
fulltext fulltext
identifier ISSN: 1080-5370
ispartof GPS solutions, 2024-04, Vol.28 (2), p.92, Article 92
issn 1080-5370
1521-1886
language eng
recordid cdi_proquest_journals_2984029657
source SpringerLink Journals - AutoHoldings
subjects Accuracy
Artificial Intelligence Applications in GNSS
Artificial neural networks
Atmospheric Sciences
Atomic clocks
Automotive Engineering
BeiDou Navigation Satellite System
Bias
Earth and Environmental Science
Earth Sciences
Electrical Engineering
Geophysics/Geodesy
Navigation systems
Neural networks
Original Article
Prediction models
Real time
Satellite navigation systems
Satellites
Space Exploration and Astronautics
Space Sciences (including Extraterrestrial Physics
Stability analysis
title Enhancing satellite clock bias prediction in BDS with LSTM-attention model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A38%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20satellite%20clock%20bias%20prediction%20in%20BDS%20with%20LSTM-attention%20model&rft.jtitle=GPS%20solutions&rft.au=Cai,%20Chenglin&rft.date=2024-04-01&rft.volume=28&rft.issue=2&rft.spage=92&rft.pages=92-&rft.artnum=92&rft.issn=1080-5370&rft.eissn=1521-1886&rft_id=info:doi/10.1007/s10291-024-01640-8&rft_dat=%3Cproquest_cross%3E2984029657%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2984029657&rft_id=info:pmid/&rfr_iscdi=true