A non-linear characterization of stochastic completeness of graphs
We study non-linear Schr\"odinger operators on graphs. We construct minimal nonnegative solutions to corresponding semi-linear elliptic equations and use them to introduce the notion of stochastic completeness at infinity in a non-linear setting. We provide characterizations for this property i...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-03 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study non-linear Schr\"odinger operators on graphs. We construct minimal nonnegative solutions to corresponding semi-linear elliptic equations and use them to introduce the notion of stochastic completeness at infinity in a non-linear setting. We provide characterizations for this property in terms of a semi-linear Liouville theorem. It is employed to establish a non-linear characterization for stochastic completeness, which is a graph version of a recent result on Riemannian manifolds. |
---|---|
ISSN: | 2331-8422 |