A non-linear characterization of stochastic completeness of graphs

We study non-linear Schr\"odinger operators on graphs. We construct minimal nonnegative solutions to corresponding semi-linear elliptic equations and use them to introduce the notion of stochastic completeness at infinity in a non-linear setting. We provide characterizations for this property i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-03
Hauptverfasser: Schmidt, Marcel, Zimmermann, Ian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study non-linear Schr\"odinger operators on graphs. We construct minimal nonnegative solutions to corresponding semi-linear elliptic equations and use them to introduce the notion of stochastic completeness at infinity in a non-linear setting. We provide characterizations for this property in terms of a semi-linear Liouville theorem. It is employed to establish a non-linear characterization for stochastic completeness, which is a graph version of a recent result on Riemannian manifolds.
ISSN:2331-8422