Testing autonomous vehicles and AI: perspectives and challenges from cybersecurity, transparency, robustness and fairness
This study explores the complexities of integrating Artificial Intelligence (AI) into Autonomous Vehicles (AVs), examining the challenges introduced by AI components and the impact on testing procedures, focusing on some of the essential requirements for trustworthy AI. Topics addressed include the...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-02 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | David Fernández Llorca Hamon, Ronan Junklewitz, Henrik Grosse, Kathrin Kunze, Lars Seiniger, Patrick Swaim, Robert Reed, Nick Alahi, Alexandre Gómez, Emilia Sánchez, Ignacio Kriston, Akos |
description | This study explores the complexities of integrating Artificial Intelligence (AI) into Autonomous Vehicles (AVs), examining the challenges introduced by AI components and the impact on testing procedures, focusing on some of the essential requirements for trustworthy AI. Topics addressed include the role of AI at various operational layers of AVs, the implications of the EU's AI Act on AVs, and the need for new testing methodologies for Advanced Driver Assistance Systems (ADAS) and Automated Driving Systems (ADS). The study also provides a detailed analysis on the importance of cybersecurity audits, the need for explainability in AI decision-making processes and protocols for assessing the robustness and ethical behaviour of predictive systems in AVs. The paper identifies significant challenges and suggests future directions for research and development of AI in AV technology, highlighting the need for multidisciplinary expertise. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2982207736</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2982207736</sourcerecordid><originalsourceid>FETCH-proquest_journals_29822077363</originalsourceid><addsrcrecordid>eNqNjk0KwjAQhYMgWNQ7BNxaqIm21Z2Ionv3EuPURmpSZ5JCb29ED-Dq8b0feAOWCCkXabkUYsSmRI8sy0ReiNVKJqw_A3lj71wF76x7ukC8g9roBogre-Pb04a3gNSC9qb7mbpWTQP2HrFC9-S6v8YK6IDG93PuUVlqFYLVkdBdA3kL9N1WyuAHJmxYqYZg-tMxmx32590xbdG9Qnx1ebiANkYXsS6FyIpC5vK_1huAj097</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2982207736</pqid></control><display><type>article</type><title>Testing autonomous vehicles and AI: perspectives and challenges from cybersecurity, transparency, robustness and fairness</title><source>Freely Accessible Journals</source><creator>David Fernández Llorca ; Hamon, Ronan ; Junklewitz, Henrik ; Grosse, Kathrin ; Kunze, Lars ; Seiniger, Patrick ; Swaim, Robert ; Reed, Nick ; Alahi, Alexandre ; Gómez, Emilia ; Sánchez, Ignacio ; Kriston, Akos</creator><creatorcontrib>David Fernández Llorca ; Hamon, Ronan ; Junklewitz, Henrik ; Grosse, Kathrin ; Kunze, Lars ; Seiniger, Patrick ; Swaim, Robert ; Reed, Nick ; Alahi, Alexandre ; Gómez, Emilia ; Sánchez, Ignacio ; Kriston, Akos</creatorcontrib><description>This study explores the complexities of integrating Artificial Intelligence (AI) into Autonomous Vehicles (AVs), examining the challenges introduced by AI components and the impact on testing procedures, focusing on some of the essential requirements for trustworthy AI. Topics addressed include the role of AI at various operational layers of AVs, the implications of the EU's AI Act on AVs, and the need for new testing methodologies for Advanced Driver Assistance Systems (ADAS) and Automated Driving Systems (ADS). The study also provides a detailed analysis on the importance of cybersecurity audits, the need for explainability in AI decision-making processes and protocols for assessing the robustness and ethical behaviour of predictive systems in AVs. The paper identifies significant challenges and suggests future directions for research and development of AI in AV technology, highlighting the need for multidisciplinary expertise.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Advanced driver assistance systems ; Artificial intelligence ; Cybersecurity ; R&D ; Research & development ; Robustness ; Test procedures</subject><ispartof>arXiv.org, 2024-02</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>781,785</link.rule.ids></links><search><creatorcontrib>David Fernández Llorca</creatorcontrib><creatorcontrib>Hamon, Ronan</creatorcontrib><creatorcontrib>Junklewitz, Henrik</creatorcontrib><creatorcontrib>Grosse, Kathrin</creatorcontrib><creatorcontrib>Kunze, Lars</creatorcontrib><creatorcontrib>Seiniger, Patrick</creatorcontrib><creatorcontrib>Swaim, Robert</creatorcontrib><creatorcontrib>Reed, Nick</creatorcontrib><creatorcontrib>Alahi, Alexandre</creatorcontrib><creatorcontrib>Gómez, Emilia</creatorcontrib><creatorcontrib>Sánchez, Ignacio</creatorcontrib><creatorcontrib>Kriston, Akos</creatorcontrib><title>Testing autonomous vehicles and AI: perspectives and challenges from cybersecurity, transparency, robustness and fairness</title><title>arXiv.org</title><description>This study explores the complexities of integrating Artificial Intelligence (AI) into Autonomous Vehicles (AVs), examining the challenges introduced by AI components and the impact on testing procedures, focusing on some of the essential requirements for trustworthy AI. Topics addressed include the role of AI at various operational layers of AVs, the implications of the EU's AI Act on AVs, and the need for new testing methodologies for Advanced Driver Assistance Systems (ADAS) and Automated Driving Systems (ADS). The study also provides a detailed analysis on the importance of cybersecurity audits, the need for explainability in AI decision-making processes and protocols for assessing the robustness and ethical behaviour of predictive systems in AVs. The paper identifies significant challenges and suggests future directions for research and development of AI in AV technology, highlighting the need for multidisciplinary expertise.</description><subject>Advanced driver assistance systems</subject><subject>Artificial intelligence</subject><subject>Cybersecurity</subject><subject>R&D</subject><subject>Research & development</subject><subject>Robustness</subject><subject>Test procedures</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjk0KwjAQhYMgWNQ7BNxaqIm21Z2Ionv3EuPURmpSZ5JCb29ED-Dq8b0feAOWCCkXabkUYsSmRI8sy0ReiNVKJqw_A3lj71wF76x7ukC8g9roBogre-Pb04a3gNSC9qb7mbpWTQP2HrFC9-S6v8YK6IDG93PuUVlqFYLVkdBdA3kL9N1WyuAHJmxYqYZg-tMxmx32590xbdG9Qnx1ebiANkYXsS6FyIpC5vK_1huAj097</recordid><startdate>20240221</startdate><enddate>20240221</enddate><creator>David Fernández Llorca</creator><creator>Hamon, Ronan</creator><creator>Junklewitz, Henrik</creator><creator>Grosse, Kathrin</creator><creator>Kunze, Lars</creator><creator>Seiniger, Patrick</creator><creator>Swaim, Robert</creator><creator>Reed, Nick</creator><creator>Alahi, Alexandre</creator><creator>Gómez, Emilia</creator><creator>Sánchez, Ignacio</creator><creator>Kriston, Akos</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240221</creationdate><title>Testing autonomous vehicles and AI: perspectives and challenges from cybersecurity, transparency, robustness and fairness</title><author>David Fernández Llorca ; Hamon, Ronan ; Junklewitz, Henrik ; Grosse, Kathrin ; Kunze, Lars ; Seiniger, Patrick ; Swaim, Robert ; Reed, Nick ; Alahi, Alexandre ; Gómez, Emilia ; Sánchez, Ignacio ; Kriston, Akos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29822077363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Advanced driver assistance systems</topic><topic>Artificial intelligence</topic><topic>Cybersecurity</topic><topic>R&D</topic><topic>Research & development</topic><topic>Robustness</topic><topic>Test procedures</topic><toplevel>online_resources</toplevel><creatorcontrib>David Fernández Llorca</creatorcontrib><creatorcontrib>Hamon, Ronan</creatorcontrib><creatorcontrib>Junklewitz, Henrik</creatorcontrib><creatorcontrib>Grosse, Kathrin</creatorcontrib><creatorcontrib>Kunze, Lars</creatorcontrib><creatorcontrib>Seiniger, Patrick</creatorcontrib><creatorcontrib>Swaim, Robert</creatorcontrib><creatorcontrib>Reed, Nick</creatorcontrib><creatorcontrib>Alahi, Alexandre</creatorcontrib><creatorcontrib>Gómez, Emilia</creatorcontrib><creatorcontrib>Sánchez, Ignacio</creatorcontrib><creatorcontrib>Kriston, Akos</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>David Fernández Llorca</au><au>Hamon, Ronan</au><au>Junklewitz, Henrik</au><au>Grosse, Kathrin</au><au>Kunze, Lars</au><au>Seiniger, Patrick</au><au>Swaim, Robert</au><au>Reed, Nick</au><au>Alahi, Alexandre</au><au>Gómez, Emilia</au><au>Sánchez, Ignacio</au><au>Kriston, Akos</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Testing autonomous vehicles and AI: perspectives and challenges from cybersecurity, transparency, robustness and fairness</atitle><jtitle>arXiv.org</jtitle><date>2024-02-21</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>This study explores the complexities of integrating Artificial Intelligence (AI) into Autonomous Vehicles (AVs), examining the challenges introduced by AI components and the impact on testing procedures, focusing on some of the essential requirements for trustworthy AI. Topics addressed include the role of AI at various operational layers of AVs, the implications of the EU's AI Act on AVs, and the need for new testing methodologies for Advanced Driver Assistance Systems (ADAS) and Automated Driving Systems (ADS). The study also provides a detailed analysis on the importance of cybersecurity audits, the need for explainability in AI decision-making processes and protocols for assessing the robustness and ethical behaviour of predictive systems in AVs. The paper identifies significant challenges and suggests future directions for research and development of AI in AV technology, highlighting the need for multidisciplinary expertise.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-02 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2982207736 |
source | Freely Accessible Journals |
subjects | Advanced driver assistance systems Artificial intelligence Cybersecurity R&D Research & development Robustness Test procedures |
title | Testing autonomous vehicles and AI: perspectives and challenges from cybersecurity, transparency, robustness and fairness |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T14%3A42%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Testing%20autonomous%20vehicles%20and%20AI:%20perspectives%20and%20challenges%20from%20cybersecurity,%20transparency,%20robustness%20and%20fairness&rft.jtitle=arXiv.org&rft.au=David%20Fern%C3%A1ndez%20Llorca&rft.date=2024-02-21&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2982207736%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2982207736&rft_id=info:pmid/&rfr_iscdi=true |