On CCGG, the De Donder‐Weyl Hamiltonian formulation of canonical gauge gravity
This short paper gives a brief overview of the manifestly covariant canonical gauge gravity (CCGG) that is rooted in the De Donder‐Weyl Hamiltonian formulation of relativistic field theories, and the proven methodology of the canonical transformation theory. That framework derives, from a few basic...
Gespeichert in:
Veröffentlicht in: | Astronomische Nachrichten 2024-02, Vol.345 (2-3), p.n/a |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 2-3 |
container_start_page | |
container_title | Astronomische Nachrichten |
container_volume | 345 |
creator | Vasak, David Kirsch, Johannes Venn, Armin Denk, Vladimir Struckmeier, Jürgen |
description | This short paper gives a brief overview of the manifestly covariant canonical gauge gravity (CCGG) that is rooted in the De Donder‐Weyl Hamiltonian formulation of relativistic field theories, and the proven methodology of the canonical transformation theory. That framework derives, from a few basic physical and mathematical assumptions, equations describing generic matter and gravity dynamics with the spin connection emerging as a Yang Mills‐type gauge field. While the interaction of any matter field with spacetime is fixed just by the transformation property of that field, a concrete gravity ansatz is introduced by the choice of the free (kinetic) gravity Hamiltonian. The key elements of this approach are discussed and its implications for particle dynamics and cosmology are presented. New insights: Anomalous Pauli coupling of spinors to curvature and torsion of spacetime, spacetime with (A)dS ground state, inertia, torsion and geometrical vacuum energy, Zero‐energy balance of the Universe leading to a vanishing cosmological constant and torsional dark energy. |
doi_str_mv | 10.1002/asna.20230154 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2973786799</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2973786799</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3524-a6d23872d0f9619e472d805c5b21918c8fce171cd6132bc7539772be854b485b3</originalsourceid><addsrcrecordid>eNp9kN1KwzAUgIMoOKeX3ge8tTO_TXM5qm7CUEHFy5Cm6ezokpm0Su98BJ_RJ7Fj6qVw4PzwnXPgA-AUowlGiFzo6PSEIEIR5mwPjDAnOKFSsn0wQgixJKVUHIKjGFdDK1OCR-D-zsE8n83OYfti4eUQ3pU2fH18Ptu-gXO9rpvWu1o7WPmw7hrd1t5BX0Gj3TA3uoFL3S0tXAb9Vrf9MTiodBPtyU8eg6frq8d8nizuZjf5dJEYyglLdFoSmglSokqmWFo2lBnihhcES5yZrDIWC2zKFFNSGMGpFIIUNuOsYBkv6Bic7e5ugn_tbGzVynfBDS8VkYKKLBVSDlSyo0zwMQZbqU2o1zr0CiO1laa20tSvtIEXO_69bmz_P6ymD7fTv81v8ulvLw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2973786799</pqid></control><display><type>article</type><title>On CCGG, the De Donder‐Weyl Hamiltonian formulation of canonical gauge gravity</title><source>Wiley Online Library All Journals</source><creator>Vasak, David ; Kirsch, Johannes ; Venn, Armin ; Denk, Vladimir ; Struckmeier, Jürgen</creator><creatorcontrib>Vasak, David ; Kirsch, Johannes ; Venn, Armin ; Denk, Vladimir ; Struckmeier, Jürgen</creatorcontrib><description>This short paper gives a brief overview of the manifestly covariant canonical gauge gravity (CCGG) that is rooted in the De Donder‐Weyl Hamiltonian formulation of relativistic field theories, and the proven methodology of the canonical transformation theory. That framework derives, from a few basic physical and mathematical assumptions, equations describing generic matter and gravity dynamics with the spin connection emerging as a Yang Mills‐type gauge field. While the interaction of any matter field with spacetime is fixed just by the transformation property of that field, a concrete gravity ansatz is introduced by the choice of the free (kinetic) gravity Hamiltonian. The key elements of this approach are discussed and its implications for particle dynamics and cosmology are presented. New insights: Anomalous Pauli coupling of spinors to curvature and torsion of spacetime, spacetime with (A)dS ground state, inertia, torsion and geometrical vacuum energy, Zero‐energy balance of the Universe leading to a vanishing cosmological constant and torsional dark energy.</description><identifier>ISSN: 0004-6337</identifier><identifier>EISSN: 1521-3994</identifier><identifier>DOI: 10.1002/asna.20230154</identifier><language>eng</language><publisher>Weinheim: WILEY‐VCH Verlag GmbH & Co. KGaA</publisher><subject>Cosmological constant ; covariant canonical gauge gravity ; curvature‐dependent fermion mass ; Dark energy ; DW Hamiltonian canonical transformation ; emerging length ; Gravity ; inertia of spacetime ; quadratic‐linear gravity ; Relativistic theory ; Relativity ; Spacetime ; Spin dynamics ; torsional dark energy ; Transformations (mathematics) ; zero‐energy universe</subject><ispartof>Astronomische Nachrichten, 2024-02, Vol.345 (2-3), p.n/a</ispartof><rights>2024 The Authors. published by Wiley‐VCH GmbH.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3524-a6d23872d0f9619e472d805c5b21918c8fce171cd6132bc7539772be854b485b3</citedby><cites>FETCH-LOGICAL-c3524-a6d23872d0f9619e472d805c5b21918c8fce171cd6132bc7539772be854b485b3</cites><orcidid>0000-0002-0493-3137 ; 0000-0002-1438-8064</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fasna.20230154$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fasna.20230154$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Vasak, David</creatorcontrib><creatorcontrib>Kirsch, Johannes</creatorcontrib><creatorcontrib>Venn, Armin</creatorcontrib><creatorcontrib>Denk, Vladimir</creatorcontrib><creatorcontrib>Struckmeier, Jürgen</creatorcontrib><title>On CCGG, the De Donder‐Weyl Hamiltonian formulation of canonical gauge gravity</title><title>Astronomische Nachrichten</title><description>This short paper gives a brief overview of the manifestly covariant canonical gauge gravity (CCGG) that is rooted in the De Donder‐Weyl Hamiltonian formulation of relativistic field theories, and the proven methodology of the canonical transformation theory. That framework derives, from a few basic physical and mathematical assumptions, equations describing generic matter and gravity dynamics with the spin connection emerging as a Yang Mills‐type gauge field. While the interaction of any matter field with spacetime is fixed just by the transformation property of that field, a concrete gravity ansatz is introduced by the choice of the free (kinetic) gravity Hamiltonian. The key elements of this approach are discussed and its implications for particle dynamics and cosmology are presented. New insights: Anomalous Pauli coupling of spinors to curvature and torsion of spacetime, spacetime with (A)dS ground state, inertia, torsion and geometrical vacuum energy, Zero‐energy balance of the Universe leading to a vanishing cosmological constant and torsional dark energy.</description><subject>Cosmological constant</subject><subject>covariant canonical gauge gravity</subject><subject>curvature‐dependent fermion mass</subject><subject>Dark energy</subject><subject>DW Hamiltonian canonical transformation</subject><subject>emerging length</subject><subject>Gravity</subject><subject>inertia of spacetime</subject><subject>quadratic‐linear gravity</subject><subject>Relativistic theory</subject><subject>Relativity</subject><subject>Spacetime</subject><subject>Spin dynamics</subject><subject>torsional dark energy</subject><subject>Transformations (mathematics)</subject><subject>zero‐energy universe</subject><issn>0004-6337</issn><issn>1521-3994</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp9kN1KwzAUgIMoOKeX3ge8tTO_TXM5qm7CUEHFy5Cm6ezokpm0Su98BJ_RJ7Fj6qVw4PzwnXPgA-AUowlGiFzo6PSEIEIR5mwPjDAnOKFSsn0wQgixJKVUHIKjGFdDK1OCR-D-zsE8n83OYfti4eUQ3pU2fH18Ptu-gXO9rpvWu1o7WPmw7hrd1t5BX0Gj3TA3uoFL3S0tXAb9Vrf9MTiodBPtyU8eg6frq8d8nizuZjf5dJEYyglLdFoSmglSokqmWFo2lBnihhcES5yZrDIWC2zKFFNSGMGpFIIUNuOsYBkv6Bic7e5ugn_tbGzVynfBDS8VkYKKLBVSDlSyo0zwMQZbqU2o1zr0CiO1laa20tSvtIEXO_69bmz_P6ymD7fTv81v8ulvLw</recordid><startdate>202402</startdate><enddate>202402</enddate><creator>Vasak, David</creator><creator>Kirsch, Johannes</creator><creator>Venn, Armin</creator><creator>Denk, Vladimir</creator><creator>Struckmeier, Jürgen</creator><general>WILEY‐VCH Verlag GmbH & Co. KGaA</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0493-3137</orcidid><orcidid>https://orcid.org/0000-0002-1438-8064</orcidid></search><sort><creationdate>202402</creationdate><title>On CCGG, the De Donder‐Weyl Hamiltonian formulation of canonical gauge gravity</title><author>Vasak, David ; Kirsch, Johannes ; Venn, Armin ; Denk, Vladimir ; Struckmeier, Jürgen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3524-a6d23872d0f9619e472d805c5b21918c8fce171cd6132bc7539772be854b485b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cosmological constant</topic><topic>covariant canonical gauge gravity</topic><topic>curvature‐dependent fermion mass</topic><topic>Dark energy</topic><topic>DW Hamiltonian canonical transformation</topic><topic>emerging length</topic><topic>Gravity</topic><topic>inertia of spacetime</topic><topic>quadratic‐linear gravity</topic><topic>Relativistic theory</topic><topic>Relativity</topic><topic>Spacetime</topic><topic>Spin dynamics</topic><topic>torsional dark energy</topic><topic>Transformations (mathematics)</topic><topic>zero‐energy universe</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vasak, David</creatorcontrib><creatorcontrib>Kirsch, Johannes</creatorcontrib><creatorcontrib>Venn, Armin</creatorcontrib><creatorcontrib>Denk, Vladimir</creatorcontrib><creatorcontrib>Struckmeier, Jürgen</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Astronomische Nachrichten</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vasak, David</au><au>Kirsch, Johannes</au><au>Venn, Armin</au><au>Denk, Vladimir</au><au>Struckmeier, Jürgen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On CCGG, the De Donder‐Weyl Hamiltonian formulation of canonical gauge gravity</atitle><jtitle>Astronomische Nachrichten</jtitle><date>2024-02</date><risdate>2024</risdate><volume>345</volume><issue>2-3</issue><epage>n/a</epage><issn>0004-6337</issn><eissn>1521-3994</eissn><abstract>This short paper gives a brief overview of the manifestly covariant canonical gauge gravity (CCGG) that is rooted in the De Donder‐Weyl Hamiltonian formulation of relativistic field theories, and the proven methodology of the canonical transformation theory. That framework derives, from a few basic physical and mathematical assumptions, equations describing generic matter and gravity dynamics with the spin connection emerging as a Yang Mills‐type gauge field. While the interaction of any matter field with spacetime is fixed just by the transformation property of that field, a concrete gravity ansatz is introduced by the choice of the free (kinetic) gravity Hamiltonian. The key elements of this approach are discussed and its implications for particle dynamics and cosmology are presented. New insights: Anomalous Pauli coupling of spinors to curvature and torsion of spacetime, spacetime with (A)dS ground state, inertia, torsion and geometrical vacuum energy, Zero‐energy balance of the Universe leading to a vanishing cosmological constant and torsional dark energy.</abstract><cop>Weinheim</cop><pub>WILEY‐VCH Verlag GmbH & Co. KGaA</pub><doi>10.1002/asna.20230154</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0493-3137</orcidid><orcidid>https://orcid.org/0000-0002-1438-8064</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-6337 |
ispartof | Astronomische Nachrichten, 2024-02, Vol.345 (2-3), p.n/a |
issn | 0004-6337 1521-3994 |
language | eng |
recordid | cdi_proquest_journals_2973786799 |
source | Wiley Online Library All Journals |
subjects | Cosmological constant covariant canonical gauge gravity curvature‐dependent fermion mass Dark energy DW Hamiltonian canonical transformation emerging length Gravity inertia of spacetime quadratic‐linear gravity Relativistic theory Relativity Spacetime Spin dynamics torsional dark energy Transformations (mathematics) zero‐energy universe |
title | On CCGG, the De Donder‐Weyl Hamiltonian formulation of canonical gauge gravity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T22%3A36%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20CCGG,%20the%20De%20Donder%E2%80%90Weyl%20Hamiltonian%20formulation%20of%20canonical%20gauge%20gravity&rft.jtitle=Astronomische%20Nachrichten&rft.au=Vasak,%20David&rft.date=2024-02&rft.volume=345&rft.issue=2-3&rft.epage=n/a&rft.issn=0004-6337&rft.eissn=1521-3994&rft_id=info:doi/10.1002/asna.20230154&rft_dat=%3Cproquest_cross%3E2973786799%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2973786799&rft_id=info:pmid/&rfr_iscdi=true |