On CCGG, the De Donder‐Weyl Hamiltonian formulation of canonical gauge gravity

This short paper gives a brief overview of the manifestly covariant canonical gauge gravity (CCGG) that is rooted in the De Donder‐Weyl Hamiltonian formulation of relativistic field theories, and the proven methodology of the canonical transformation theory. That framework derives, from a few basic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astronomische Nachrichten 2024-02, Vol.345 (2-3), p.n/a
Hauptverfasser: Vasak, David, Kirsch, Johannes, Venn, Armin, Denk, Vladimir, Struckmeier, Jürgen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 2-3
container_start_page
container_title Astronomische Nachrichten
container_volume 345
creator Vasak, David
Kirsch, Johannes
Venn, Armin
Denk, Vladimir
Struckmeier, Jürgen
description This short paper gives a brief overview of the manifestly covariant canonical gauge gravity (CCGG) that is rooted in the De Donder‐Weyl Hamiltonian formulation of relativistic field theories, and the proven methodology of the canonical transformation theory. That framework derives, from a few basic physical and mathematical assumptions, equations describing generic matter and gravity dynamics with the spin connection emerging as a Yang Mills‐type gauge field. While the interaction of any matter field with spacetime is fixed just by the transformation property of that field, a concrete gravity ansatz is introduced by the choice of the free (kinetic) gravity Hamiltonian. The key elements of this approach are discussed and its implications for particle dynamics and cosmology are presented. New insights: Anomalous Pauli coupling of spinors to curvature and torsion of spacetime, spacetime with (A)dS ground state, inertia, torsion and geometrical vacuum energy, Zero‐energy balance of the Universe leading to a vanishing cosmological constant and torsional dark energy.
doi_str_mv 10.1002/asna.20230154
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2973786799</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2973786799</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3524-a6d23872d0f9619e472d805c5b21918c8fce171cd6132bc7539772be854b485b3</originalsourceid><addsrcrecordid>eNp9kN1KwzAUgIMoOKeX3ge8tTO_TXM5qm7CUEHFy5Cm6ezokpm0Su98BJ_RJ7Fj6qVw4PzwnXPgA-AUowlGiFzo6PSEIEIR5mwPjDAnOKFSsn0wQgixJKVUHIKjGFdDK1OCR-D-zsE8n83OYfti4eUQ3pU2fH18Ptu-gXO9rpvWu1o7WPmw7hrd1t5BX0Gj3TA3uoFL3S0tXAb9Vrf9MTiodBPtyU8eg6frq8d8nizuZjf5dJEYyglLdFoSmglSokqmWFo2lBnihhcES5yZrDIWC2zKFFNSGMGpFIIUNuOsYBkv6Bic7e5ugn_tbGzVynfBDS8VkYKKLBVSDlSyo0zwMQZbqU2o1zr0CiO1laa20tSvtIEXO_69bmz_P6ymD7fTv81v8ulvLw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2973786799</pqid></control><display><type>article</type><title>On CCGG, the De Donder‐Weyl Hamiltonian formulation of canonical gauge gravity</title><source>Wiley Online Library All Journals</source><creator>Vasak, David ; Kirsch, Johannes ; Venn, Armin ; Denk, Vladimir ; Struckmeier, Jürgen</creator><creatorcontrib>Vasak, David ; Kirsch, Johannes ; Venn, Armin ; Denk, Vladimir ; Struckmeier, Jürgen</creatorcontrib><description>This short paper gives a brief overview of the manifestly covariant canonical gauge gravity (CCGG) that is rooted in the De Donder‐Weyl Hamiltonian formulation of relativistic field theories, and the proven methodology of the canonical transformation theory. That framework derives, from a few basic physical and mathematical assumptions, equations describing generic matter and gravity dynamics with the spin connection emerging as a Yang Mills‐type gauge field. While the interaction of any matter field with spacetime is fixed just by the transformation property of that field, a concrete gravity ansatz is introduced by the choice of the free (kinetic) gravity Hamiltonian. The key elements of this approach are discussed and its implications for particle dynamics and cosmology are presented. New insights: Anomalous Pauli coupling of spinors to curvature and torsion of spacetime, spacetime with (A)dS ground state, inertia, torsion and geometrical vacuum energy, Zero‐energy balance of the Universe leading to a vanishing cosmological constant and torsional dark energy.</description><identifier>ISSN: 0004-6337</identifier><identifier>EISSN: 1521-3994</identifier><identifier>DOI: 10.1002/asna.20230154</identifier><language>eng</language><publisher>Weinheim: WILEY‐VCH Verlag GmbH &amp; Co. KGaA</publisher><subject>Cosmological constant ; covariant canonical gauge gravity ; curvature‐dependent fermion mass ; Dark energy ; DW Hamiltonian canonical transformation ; emerging length ; Gravity ; inertia of spacetime ; quadratic‐linear gravity ; Relativistic theory ; Relativity ; Spacetime ; Spin dynamics ; torsional dark energy ; Transformations (mathematics) ; zero‐energy universe</subject><ispartof>Astronomische Nachrichten, 2024-02, Vol.345 (2-3), p.n/a</ispartof><rights>2024 The Authors. published by Wiley‐VCH GmbH.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3524-a6d23872d0f9619e472d805c5b21918c8fce171cd6132bc7539772be854b485b3</citedby><cites>FETCH-LOGICAL-c3524-a6d23872d0f9619e472d805c5b21918c8fce171cd6132bc7539772be854b485b3</cites><orcidid>0000-0002-0493-3137 ; 0000-0002-1438-8064</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fasna.20230154$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fasna.20230154$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Vasak, David</creatorcontrib><creatorcontrib>Kirsch, Johannes</creatorcontrib><creatorcontrib>Venn, Armin</creatorcontrib><creatorcontrib>Denk, Vladimir</creatorcontrib><creatorcontrib>Struckmeier, Jürgen</creatorcontrib><title>On CCGG, the De Donder‐Weyl Hamiltonian formulation of canonical gauge gravity</title><title>Astronomische Nachrichten</title><description>This short paper gives a brief overview of the manifestly covariant canonical gauge gravity (CCGG) that is rooted in the De Donder‐Weyl Hamiltonian formulation of relativistic field theories, and the proven methodology of the canonical transformation theory. That framework derives, from a few basic physical and mathematical assumptions, equations describing generic matter and gravity dynamics with the spin connection emerging as a Yang Mills‐type gauge field. While the interaction of any matter field with spacetime is fixed just by the transformation property of that field, a concrete gravity ansatz is introduced by the choice of the free (kinetic) gravity Hamiltonian. The key elements of this approach are discussed and its implications for particle dynamics and cosmology are presented. New insights: Anomalous Pauli coupling of spinors to curvature and torsion of spacetime, spacetime with (A)dS ground state, inertia, torsion and geometrical vacuum energy, Zero‐energy balance of the Universe leading to a vanishing cosmological constant and torsional dark energy.</description><subject>Cosmological constant</subject><subject>covariant canonical gauge gravity</subject><subject>curvature‐dependent fermion mass</subject><subject>Dark energy</subject><subject>DW Hamiltonian canonical transformation</subject><subject>emerging length</subject><subject>Gravity</subject><subject>inertia of spacetime</subject><subject>quadratic‐linear gravity</subject><subject>Relativistic theory</subject><subject>Relativity</subject><subject>Spacetime</subject><subject>Spin dynamics</subject><subject>torsional dark energy</subject><subject>Transformations (mathematics)</subject><subject>zero‐energy universe</subject><issn>0004-6337</issn><issn>1521-3994</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp9kN1KwzAUgIMoOKeX3ge8tTO_TXM5qm7CUEHFy5Cm6ezokpm0Su98BJ_RJ7Fj6qVw4PzwnXPgA-AUowlGiFzo6PSEIEIR5mwPjDAnOKFSsn0wQgixJKVUHIKjGFdDK1OCR-D-zsE8n83OYfti4eUQ3pU2fH18Ptu-gXO9rpvWu1o7WPmw7hrd1t5BX0Gj3TA3uoFL3S0tXAb9Vrf9MTiodBPtyU8eg6frq8d8nizuZjf5dJEYyglLdFoSmglSokqmWFo2lBnihhcES5yZrDIWC2zKFFNSGMGpFIIUNuOsYBkv6Bic7e5ugn_tbGzVynfBDS8VkYKKLBVSDlSyo0zwMQZbqU2o1zr0CiO1laa20tSvtIEXO_69bmz_P6ymD7fTv81v8ulvLw</recordid><startdate>202402</startdate><enddate>202402</enddate><creator>Vasak, David</creator><creator>Kirsch, Johannes</creator><creator>Venn, Armin</creator><creator>Denk, Vladimir</creator><creator>Struckmeier, Jürgen</creator><general>WILEY‐VCH Verlag GmbH &amp; Co. KGaA</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0493-3137</orcidid><orcidid>https://orcid.org/0000-0002-1438-8064</orcidid></search><sort><creationdate>202402</creationdate><title>On CCGG, the De Donder‐Weyl Hamiltonian formulation of canonical gauge gravity</title><author>Vasak, David ; Kirsch, Johannes ; Venn, Armin ; Denk, Vladimir ; Struckmeier, Jürgen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3524-a6d23872d0f9619e472d805c5b21918c8fce171cd6132bc7539772be854b485b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cosmological constant</topic><topic>covariant canonical gauge gravity</topic><topic>curvature‐dependent fermion mass</topic><topic>Dark energy</topic><topic>DW Hamiltonian canonical transformation</topic><topic>emerging length</topic><topic>Gravity</topic><topic>inertia of spacetime</topic><topic>quadratic‐linear gravity</topic><topic>Relativistic theory</topic><topic>Relativity</topic><topic>Spacetime</topic><topic>Spin dynamics</topic><topic>torsional dark energy</topic><topic>Transformations (mathematics)</topic><topic>zero‐energy universe</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vasak, David</creatorcontrib><creatorcontrib>Kirsch, Johannes</creatorcontrib><creatorcontrib>Venn, Armin</creatorcontrib><creatorcontrib>Denk, Vladimir</creatorcontrib><creatorcontrib>Struckmeier, Jürgen</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Astronomische Nachrichten</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vasak, David</au><au>Kirsch, Johannes</au><au>Venn, Armin</au><au>Denk, Vladimir</au><au>Struckmeier, Jürgen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On CCGG, the De Donder‐Weyl Hamiltonian formulation of canonical gauge gravity</atitle><jtitle>Astronomische Nachrichten</jtitle><date>2024-02</date><risdate>2024</risdate><volume>345</volume><issue>2-3</issue><epage>n/a</epage><issn>0004-6337</issn><eissn>1521-3994</eissn><abstract>This short paper gives a brief overview of the manifestly covariant canonical gauge gravity (CCGG) that is rooted in the De Donder‐Weyl Hamiltonian formulation of relativistic field theories, and the proven methodology of the canonical transformation theory. That framework derives, from a few basic physical and mathematical assumptions, equations describing generic matter and gravity dynamics with the spin connection emerging as a Yang Mills‐type gauge field. While the interaction of any matter field with spacetime is fixed just by the transformation property of that field, a concrete gravity ansatz is introduced by the choice of the free (kinetic) gravity Hamiltonian. The key elements of this approach are discussed and its implications for particle dynamics and cosmology are presented. New insights: Anomalous Pauli coupling of spinors to curvature and torsion of spacetime, spacetime with (A)dS ground state, inertia, torsion and geometrical vacuum energy, Zero‐energy balance of the Universe leading to a vanishing cosmological constant and torsional dark energy.</abstract><cop>Weinheim</cop><pub>WILEY‐VCH Verlag GmbH &amp; Co. KGaA</pub><doi>10.1002/asna.20230154</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0493-3137</orcidid><orcidid>https://orcid.org/0000-0002-1438-8064</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-6337
ispartof Astronomische Nachrichten, 2024-02, Vol.345 (2-3), p.n/a
issn 0004-6337
1521-3994
language eng
recordid cdi_proquest_journals_2973786799
source Wiley Online Library All Journals
subjects Cosmological constant
covariant canonical gauge gravity
curvature‐dependent fermion mass
Dark energy
DW Hamiltonian canonical transformation
emerging length
Gravity
inertia of spacetime
quadratic‐linear gravity
Relativistic theory
Relativity
Spacetime
Spin dynamics
torsional dark energy
Transformations (mathematics)
zero‐energy universe
title On CCGG, the De Donder‐Weyl Hamiltonian formulation of canonical gauge gravity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T22%3A36%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20CCGG,%20the%20De%20Donder%E2%80%90Weyl%20Hamiltonian%20formulation%20of%20canonical%20gauge%20gravity&rft.jtitle=Astronomische%20Nachrichten&rft.au=Vasak,%20David&rft.date=2024-02&rft.volume=345&rft.issue=2-3&rft.epage=n/a&rft.issn=0004-6337&rft.eissn=1521-3994&rft_id=info:doi/10.1002/asna.20230154&rft_dat=%3Cproquest_cross%3E2973786799%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2973786799&rft_id=info:pmid/&rfr_iscdi=true