Photonic chip-based low-noise microwave oscillator
Numerous modern technologies are reliant on the low-phase noise and exquisite timing stability of microwave signals. Substantial progress has been made in the field of microwave photonics, whereby low-noise microwave signals are generated by the down-conversion of ultrastable optical references usin...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2024-03, Vol.627 (8004), p.534-539G |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 539G |
---|---|
container_issue | 8004 |
container_start_page | 534 |
container_title | Nature (London) |
container_volume | 627 |
creator | Kudelin, Igor Groman, William Ji, Qing-Xin Guo, Joel Kelleher, Megan L Lee, Dahyeon Nakamura, Takuma McLemore, Charles A Shirmohammadi, Pedram Hanifi, Samin Cheng, Haotian Jin, Naijun Wu, Lue Halladay, Samuel Luo, Yizhi Dai, Zhaowei Jin, Warren Bai, Junwu Liu, Yifan Zhang, Wei Xiang, Chao Chang, Lin Iltchenko, Vladimir Miller, Owen Matsko, Andrey Bowers, Steven M Rakich, Peter T Campbell, Joe C Bowers, John E Vahala, Kerry J Quinlan, Franklyn Diddams, Scott A |
description | Numerous modern technologies are reliant on the low-phase noise and exquisite timing stability of microwave signals. Substantial progress has been made in the field of microwave photonics, whereby low-noise microwave signals are generated by the down-conversion of ultrastable optical references using a frequency comb13. Such systems, however, are constructed with bulk or fibre optics and are difficult to further reduce in size and power consumption. In this work we address this challenge by leveraging advances in integrated photonics to demonstrate low-noise microwave generation via two-point optical frequency division4,5. Narrow-linewidth self-injection-locked integrated lasers6,7 are stabilized to a miniature Fabry-Perot cavity8, and the frequency gap between the lasers is divided with an efficient dark soliton frequency comb9. The stabilized output of the microcomb is photodetected to produce a microwave signal at 20 GHz with phase noise of-96 dBc Hz1 at 100 Hz offset frequency that decreases to -135 dBc Hz1 at 10 kHz offset-values that are unprecedented for an integrated photonic system. All photonic components can be heterogeneously integrated on a single chip, providing a significant advance for the application of photonics to high-precision navigation, communication and timing systems. |
doi_str_mv | 10.1O38/s41586-O24-O7O58-z |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2973696941</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2973696941</sourcerecordid><originalsourceid>FETCH-proquest_journals_29736969413</originalsourceid><addsrcrecordid>eNqNyrsOwiAYQGFiNLFeXsCJxBkFSoHORuOGg3tTK6Y02L9Cq4lPr4MP4HSG7yC0YnTDTKq3UbBMS2K4IEaZTJP3CCVMKEmE1GqMEkq5JlSncopmMTaU0owpkSB-qqGH1lW4ql1HLmW0V-zhRVpw0eK7qwK8yqfFECvnfdlDWKDJrfTRLn-do_Vhf94dSRfgMdjYFw0Mof1SwXOVylzmgqX_XR-rzTve</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2973696941</pqid></control><display><type>article</type><title>Photonic chip-based low-noise microwave oscillator</title><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Kudelin, Igor ; Groman, William ; Ji, Qing-Xin ; Guo, Joel ; Kelleher, Megan L ; Lee, Dahyeon ; Nakamura, Takuma ; McLemore, Charles A ; Shirmohammadi, Pedram ; Hanifi, Samin ; Cheng, Haotian ; Jin, Naijun ; Wu, Lue ; Halladay, Samuel ; Luo, Yizhi ; Dai, Zhaowei ; Jin, Warren ; Bai, Junwu ; Liu, Yifan ; Zhang, Wei ; Xiang, Chao ; Chang, Lin ; Iltchenko, Vladimir ; Miller, Owen ; Matsko, Andrey ; Bowers, Steven M ; Rakich, Peter T ; Campbell, Joe C ; Bowers, John E ; Vahala, Kerry J ; Quinlan, Franklyn ; Diddams, Scott A</creator><creatorcontrib>Kudelin, Igor ; Groman, William ; Ji, Qing-Xin ; Guo, Joel ; Kelleher, Megan L ; Lee, Dahyeon ; Nakamura, Takuma ; McLemore, Charles A ; Shirmohammadi, Pedram ; Hanifi, Samin ; Cheng, Haotian ; Jin, Naijun ; Wu, Lue ; Halladay, Samuel ; Luo, Yizhi ; Dai, Zhaowei ; Jin, Warren ; Bai, Junwu ; Liu, Yifan ; Zhang, Wei ; Xiang, Chao ; Chang, Lin ; Iltchenko, Vladimir ; Miller, Owen ; Matsko, Andrey ; Bowers, Steven M ; Rakich, Peter T ; Campbell, Joe C ; Bowers, John E ; Vahala, Kerry J ; Quinlan, Franklyn ; Diddams, Scott A</creatorcontrib><description>Numerous modern technologies are reliant on the low-phase noise and exquisite timing stability of microwave signals. Substantial progress has been made in the field of microwave photonics, whereby low-noise microwave signals are generated by the down-conversion of ultrastable optical references using a frequency comb13. Such systems, however, are constructed with bulk or fibre optics and are difficult to further reduce in size and power consumption. In this work we address this challenge by leveraging advances in integrated photonics to demonstrate low-noise microwave generation via two-point optical frequency division4,5. Narrow-linewidth self-injection-locked integrated lasers6,7 are stabilized to a miniature Fabry-Perot cavity8, and the frequency gap between the lasers is divided with an efficient dark soliton frequency comb9. The stabilized output of the microcomb is photodetected to produce a microwave signal at 20 GHz with phase noise of-96 dBc Hz1 at 100 Hz offset frequency that decreases to -135 dBc Hz1 at 10 kHz offset-values that are unprecedented for an integrated photonic system. All photonic components can be heterogeneously integrated on a single chip, providing a significant advance for the application of photonics to high-precision navigation, communication and timing systems.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1O38/s41586-O24-O7O58-z</identifier><language>eng</language><publisher>London: Nature Publishing Group</publisher><subject>Fiber optics ; Laboratories ; Lasers ; Microwave oscillators ; Microwave photonics ; Navigation systems ; Noise generation ; Optical frequency ; Optics ; Phase noise ; Photonics ; Power ; Power consumption ; Semiconductors ; Solitary waves ; Solitons</subject><ispartof>Nature (London), 2024-03, Vol.627 (8004), p.534-539G</ispartof><rights>Copyright Nature Publishing Group Mar 21, 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Kudelin, Igor</creatorcontrib><creatorcontrib>Groman, William</creatorcontrib><creatorcontrib>Ji, Qing-Xin</creatorcontrib><creatorcontrib>Guo, Joel</creatorcontrib><creatorcontrib>Kelleher, Megan L</creatorcontrib><creatorcontrib>Lee, Dahyeon</creatorcontrib><creatorcontrib>Nakamura, Takuma</creatorcontrib><creatorcontrib>McLemore, Charles A</creatorcontrib><creatorcontrib>Shirmohammadi, Pedram</creatorcontrib><creatorcontrib>Hanifi, Samin</creatorcontrib><creatorcontrib>Cheng, Haotian</creatorcontrib><creatorcontrib>Jin, Naijun</creatorcontrib><creatorcontrib>Wu, Lue</creatorcontrib><creatorcontrib>Halladay, Samuel</creatorcontrib><creatorcontrib>Luo, Yizhi</creatorcontrib><creatorcontrib>Dai, Zhaowei</creatorcontrib><creatorcontrib>Jin, Warren</creatorcontrib><creatorcontrib>Bai, Junwu</creatorcontrib><creatorcontrib>Liu, Yifan</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Xiang, Chao</creatorcontrib><creatorcontrib>Chang, Lin</creatorcontrib><creatorcontrib>Iltchenko, Vladimir</creatorcontrib><creatorcontrib>Miller, Owen</creatorcontrib><creatorcontrib>Matsko, Andrey</creatorcontrib><creatorcontrib>Bowers, Steven M</creatorcontrib><creatorcontrib>Rakich, Peter T</creatorcontrib><creatorcontrib>Campbell, Joe C</creatorcontrib><creatorcontrib>Bowers, John E</creatorcontrib><creatorcontrib>Vahala, Kerry J</creatorcontrib><creatorcontrib>Quinlan, Franklyn</creatorcontrib><creatorcontrib>Diddams, Scott A</creatorcontrib><title>Photonic chip-based low-noise microwave oscillator</title><title>Nature (London)</title><description>Numerous modern technologies are reliant on the low-phase noise and exquisite timing stability of microwave signals. Substantial progress has been made in the field of microwave photonics, whereby low-noise microwave signals are generated by the down-conversion of ultrastable optical references using a frequency comb13. Such systems, however, are constructed with bulk or fibre optics and are difficult to further reduce in size and power consumption. In this work we address this challenge by leveraging advances in integrated photonics to demonstrate low-noise microwave generation via two-point optical frequency division4,5. Narrow-linewidth self-injection-locked integrated lasers6,7 are stabilized to a miniature Fabry-Perot cavity8, and the frequency gap between the lasers is divided with an efficient dark soliton frequency comb9. The stabilized output of the microcomb is photodetected to produce a microwave signal at 20 GHz with phase noise of-96 dBc Hz1 at 100 Hz offset frequency that decreases to -135 dBc Hz1 at 10 kHz offset-values that are unprecedented for an integrated photonic system. All photonic components can be heterogeneously integrated on a single chip, providing a significant advance for the application of photonics to high-precision navigation, communication and timing systems.</description><subject>Fiber optics</subject><subject>Laboratories</subject><subject>Lasers</subject><subject>Microwave oscillators</subject><subject>Microwave photonics</subject><subject>Navigation systems</subject><subject>Noise generation</subject><subject>Optical frequency</subject><subject>Optics</subject><subject>Phase noise</subject><subject>Photonics</subject><subject>Power</subject><subject>Power consumption</subject><subject>Semiconductors</subject><subject>Solitary waves</subject><subject>Solitons</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqNyrsOwiAYQGFiNLFeXsCJxBkFSoHORuOGg3tTK6Y02L9Cq4lPr4MP4HSG7yC0YnTDTKq3UbBMS2K4IEaZTJP3CCVMKEmE1GqMEkq5JlSncopmMTaU0owpkSB-qqGH1lW4ql1HLmW0V-zhRVpw0eK7qwK8yqfFECvnfdlDWKDJrfTRLn-do_Vhf94dSRfgMdjYFw0Mof1SwXOVylzmgqX_XR-rzTve</recordid><startdate>20240321</startdate><enddate>20240321</enddate><creator>Kudelin, Igor</creator><creator>Groman, William</creator><creator>Ji, Qing-Xin</creator><creator>Guo, Joel</creator><creator>Kelleher, Megan L</creator><creator>Lee, Dahyeon</creator><creator>Nakamura, Takuma</creator><creator>McLemore, Charles A</creator><creator>Shirmohammadi, Pedram</creator><creator>Hanifi, Samin</creator><creator>Cheng, Haotian</creator><creator>Jin, Naijun</creator><creator>Wu, Lue</creator><creator>Halladay, Samuel</creator><creator>Luo, Yizhi</creator><creator>Dai, Zhaowei</creator><creator>Jin, Warren</creator><creator>Bai, Junwu</creator><creator>Liu, Yifan</creator><creator>Zhang, Wei</creator><creator>Xiang, Chao</creator><creator>Chang, Lin</creator><creator>Iltchenko, Vladimir</creator><creator>Miller, Owen</creator><creator>Matsko, Andrey</creator><creator>Bowers, Steven M</creator><creator>Rakich, Peter T</creator><creator>Campbell, Joe C</creator><creator>Bowers, John E</creator><creator>Vahala, Kerry J</creator><creator>Quinlan, Franklyn</creator><creator>Diddams, Scott A</creator><general>Nature Publishing Group</general><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>KL.</scope><scope>M7N</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope></search><sort><creationdate>20240321</creationdate><title>Photonic chip-based low-noise microwave oscillator</title><author>Kudelin, Igor ; Groman, William ; Ji, Qing-Xin ; Guo, Joel ; Kelleher, Megan L ; Lee, Dahyeon ; Nakamura, Takuma ; McLemore, Charles A ; Shirmohammadi, Pedram ; Hanifi, Samin ; Cheng, Haotian ; Jin, Naijun ; Wu, Lue ; Halladay, Samuel ; Luo, Yizhi ; Dai, Zhaowei ; Jin, Warren ; Bai, Junwu ; Liu, Yifan ; Zhang, Wei ; Xiang, Chao ; Chang, Lin ; Iltchenko, Vladimir ; Miller, Owen ; Matsko, Andrey ; Bowers, Steven M ; Rakich, Peter T ; Campbell, Joe C ; Bowers, John E ; Vahala, Kerry J ; Quinlan, Franklyn ; Diddams, Scott A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29736969413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Fiber optics</topic><topic>Laboratories</topic><topic>Lasers</topic><topic>Microwave oscillators</topic><topic>Microwave photonics</topic><topic>Navigation systems</topic><topic>Noise generation</topic><topic>Optical frequency</topic><topic>Optics</topic><topic>Phase noise</topic><topic>Photonics</topic><topic>Power</topic><topic>Power consumption</topic><topic>Semiconductors</topic><topic>Solitary waves</topic><topic>Solitons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kudelin, Igor</creatorcontrib><creatorcontrib>Groman, William</creatorcontrib><creatorcontrib>Ji, Qing-Xin</creatorcontrib><creatorcontrib>Guo, Joel</creatorcontrib><creatorcontrib>Kelleher, Megan L</creatorcontrib><creatorcontrib>Lee, Dahyeon</creatorcontrib><creatorcontrib>Nakamura, Takuma</creatorcontrib><creatorcontrib>McLemore, Charles A</creatorcontrib><creatorcontrib>Shirmohammadi, Pedram</creatorcontrib><creatorcontrib>Hanifi, Samin</creatorcontrib><creatorcontrib>Cheng, Haotian</creatorcontrib><creatorcontrib>Jin, Naijun</creatorcontrib><creatorcontrib>Wu, Lue</creatorcontrib><creatorcontrib>Halladay, Samuel</creatorcontrib><creatorcontrib>Luo, Yizhi</creatorcontrib><creatorcontrib>Dai, Zhaowei</creatorcontrib><creatorcontrib>Jin, Warren</creatorcontrib><creatorcontrib>Bai, Junwu</creatorcontrib><creatorcontrib>Liu, Yifan</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Xiang, Chao</creatorcontrib><creatorcontrib>Chang, Lin</creatorcontrib><creatorcontrib>Iltchenko, Vladimir</creatorcontrib><creatorcontrib>Miller, Owen</creatorcontrib><creatorcontrib>Matsko, Andrey</creatorcontrib><creatorcontrib>Bowers, Steven M</creatorcontrib><creatorcontrib>Rakich, Peter T</creatorcontrib><creatorcontrib>Campbell, Joe C</creatorcontrib><creatorcontrib>Bowers, John E</creatorcontrib><creatorcontrib>Vahala, Kerry J</creatorcontrib><creatorcontrib>Quinlan, Franklyn</creatorcontrib><creatorcontrib>Diddams, Scott A</creatorcontrib><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kudelin, Igor</au><au>Groman, William</au><au>Ji, Qing-Xin</au><au>Guo, Joel</au><au>Kelleher, Megan L</au><au>Lee, Dahyeon</au><au>Nakamura, Takuma</au><au>McLemore, Charles A</au><au>Shirmohammadi, Pedram</au><au>Hanifi, Samin</au><au>Cheng, Haotian</au><au>Jin, Naijun</au><au>Wu, Lue</au><au>Halladay, Samuel</au><au>Luo, Yizhi</au><au>Dai, Zhaowei</au><au>Jin, Warren</au><au>Bai, Junwu</au><au>Liu, Yifan</au><au>Zhang, Wei</au><au>Xiang, Chao</au><au>Chang, Lin</au><au>Iltchenko, Vladimir</au><au>Miller, Owen</au><au>Matsko, Andrey</au><au>Bowers, Steven M</au><au>Rakich, Peter T</au><au>Campbell, Joe C</au><au>Bowers, John E</au><au>Vahala, Kerry J</au><au>Quinlan, Franklyn</au><au>Diddams, Scott A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photonic chip-based low-noise microwave oscillator</atitle><jtitle>Nature (London)</jtitle><date>2024-03-21</date><risdate>2024</risdate><volume>627</volume><issue>8004</issue><spage>534</spage><epage>539G</epage><pages>534-539G</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>Numerous modern technologies are reliant on the low-phase noise and exquisite timing stability of microwave signals. Substantial progress has been made in the field of microwave photonics, whereby low-noise microwave signals are generated by the down-conversion of ultrastable optical references using a frequency comb13. Such systems, however, are constructed with bulk or fibre optics and are difficult to further reduce in size and power consumption. In this work we address this challenge by leveraging advances in integrated photonics to demonstrate low-noise microwave generation via two-point optical frequency division4,5. Narrow-linewidth self-injection-locked integrated lasers6,7 are stabilized to a miniature Fabry-Perot cavity8, and the frequency gap between the lasers is divided with an efficient dark soliton frequency comb9. The stabilized output of the microcomb is photodetected to produce a microwave signal at 20 GHz with phase noise of-96 dBc Hz1 at 100 Hz offset frequency that decreases to -135 dBc Hz1 at 10 kHz offset-values that are unprecedented for an integrated photonic system. All photonic components can be heterogeneously integrated on a single chip, providing a significant advance for the application of photonics to high-precision navigation, communication and timing systems.</abstract><cop>London</cop><pub>Nature Publishing Group</pub><doi>10.1O38/s41586-O24-O7O58-z</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2024-03, Vol.627 (8004), p.534-539G |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_proquest_journals_2973696941 |
source | SpringerLink Journals; Nature Journals Online |
subjects | Fiber optics Laboratories Lasers Microwave oscillators Microwave photonics Navigation systems Noise generation Optical frequency Optics Phase noise Photonics Power Power consumption Semiconductors Solitary waves Solitons |
title | Photonic chip-based low-noise microwave oscillator |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T05%3A55%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photonic%20chip-based%20low-noise%20microwave%20oscillator&rft.jtitle=Nature%20(London)&rft.au=Kudelin,%20Igor&rft.date=2024-03-21&rft.volume=627&rft.issue=8004&rft.spage=534&rft.epage=539G&rft.pages=534-539G&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1O38/s41586-O24-O7O58-z&rft_dat=%3Cproquest%3E2973696941%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2973696941&rft_id=info:pmid/&rfr_iscdi=true |