Photonic chip-based low-noise microwave oscillator

Numerous modern technologies are reliant on the low-phase noise and exquisite timing stability of microwave signals. Substantial progress has been made in the field of microwave photonics, whereby low-noise microwave signals are generated by the down-conversion of ultrastable optical references usin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2024-03, Vol.627 (8004), p.534-539G
Hauptverfasser: Kudelin, Igor, Groman, William, Ji, Qing-Xin, Guo, Joel, Kelleher, Megan L, Lee, Dahyeon, Nakamura, Takuma, McLemore, Charles A, Shirmohammadi, Pedram, Hanifi, Samin, Cheng, Haotian, Jin, Naijun, Wu, Lue, Halladay, Samuel, Luo, Yizhi, Dai, Zhaowei, Jin, Warren, Bai, Junwu, Liu, Yifan, Zhang, Wei, Xiang, Chao, Chang, Lin, Iltchenko, Vladimir, Miller, Owen, Matsko, Andrey, Bowers, Steven M, Rakich, Peter T, Campbell, Joe C, Bowers, John E, Vahala, Kerry J, Quinlan, Franklyn, Diddams, Scott A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 539G
container_issue 8004
container_start_page 534
container_title Nature (London)
container_volume 627
creator Kudelin, Igor
Groman, William
Ji, Qing-Xin
Guo, Joel
Kelleher, Megan L
Lee, Dahyeon
Nakamura, Takuma
McLemore, Charles A
Shirmohammadi, Pedram
Hanifi, Samin
Cheng, Haotian
Jin, Naijun
Wu, Lue
Halladay, Samuel
Luo, Yizhi
Dai, Zhaowei
Jin, Warren
Bai, Junwu
Liu, Yifan
Zhang, Wei
Xiang, Chao
Chang, Lin
Iltchenko, Vladimir
Miller, Owen
Matsko, Andrey
Bowers, Steven M
Rakich, Peter T
Campbell, Joe C
Bowers, John E
Vahala, Kerry J
Quinlan, Franklyn
Diddams, Scott A
description Numerous modern technologies are reliant on the low-phase noise and exquisite timing stability of microwave signals. Substantial progress has been made in the field of microwave photonics, whereby low-noise microwave signals are generated by the down-conversion of ultrastable optical references using a frequency comb13. Such systems, however, are constructed with bulk or fibre optics and are difficult to further reduce in size and power consumption. In this work we address this challenge by leveraging advances in integrated photonics to demonstrate low-noise microwave generation via two-point optical frequency division4,5. Narrow-linewidth self-injection-locked integrated lasers6,7 are stabilized to a miniature Fabry-Perot cavity8, and the frequency gap between the lasers is divided with an efficient dark soliton frequency comb9. The stabilized output of the microcomb is photodetected to produce a microwave signal at 20 GHz with phase noise of-96 dBc Hz1 at 100 Hz offset frequency that decreases to -135 dBc Hz1 at 10 kHz offset-values that are unprecedented for an integrated photonic system. All photonic components can be heterogeneously integrated on a single chip, providing a significant advance for the application of photonics to high-precision navigation, communication and timing systems.
doi_str_mv 10.1O38/s41586-O24-O7O58-z
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2973696941</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2973696941</sourcerecordid><originalsourceid>FETCH-proquest_journals_29736969413</originalsourceid><addsrcrecordid>eNqNyrsOwiAYQGFiNLFeXsCJxBkFSoHORuOGg3tTK6Y02L9Cq4lPr4MP4HSG7yC0YnTDTKq3UbBMS2K4IEaZTJP3CCVMKEmE1GqMEkq5JlSncopmMTaU0owpkSB-qqGH1lW4ql1HLmW0V-zhRVpw0eK7qwK8yqfFECvnfdlDWKDJrfTRLn-do_Vhf94dSRfgMdjYFw0Mof1SwXOVylzmgqX_XR-rzTve</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2973696941</pqid></control><display><type>article</type><title>Photonic chip-based low-noise microwave oscillator</title><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Kudelin, Igor ; Groman, William ; Ji, Qing-Xin ; Guo, Joel ; Kelleher, Megan L ; Lee, Dahyeon ; Nakamura, Takuma ; McLemore, Charles A ; Shirmohammadi, Pedram ; Hanifi, Samin ; Cheng, Haotian ; Jin, Naijun ; Wu, Lue ; Halladay, Samuel ; Luo, Yizhi ; Dai, Zhaowei ; Jin, Warren ; Bai, Junwu ; Liu, Yifan ; Zhang, Wei ; Xiang, Chao ; Chang, Lin ; Iltchenko, Vladimir ; Miller, Owen ; Matsko, Andrey ; Bowers, Steven M ; Rakich, Peter T ; Campbell, Joe C ; Bowers, John E ; Vahala, Kerry J ; Quinlan, Franklyn ; Diddams, Scott A</creator><creatorcontrib>Kudelin, Igor ; Groman, William ; Ji, Qing-Xin ; Guo, Joel ; Kelleher, Megan L ; Lee, Dahyeon ; Nakamura, Takuma ; McLemore, Charles A ; Shirmohammadi, Pedram ; Hanifi, Samin ; Cheng, Haotian ; Jin, Naijun ; Wu, Lue ; Halladay, Samuel ; Luo, Yizhi ; Dai, Zhaowei ; Jin, Warren ; Bai, Junwu ; Liu, Yifan ; Zhang, Wei ; Xiang, Chao ; Chang, Lin ; Iltchenko, Vladimir ; Miller, Owen ; Matsko, Andrey ; Bowers, Steven M ; Rakich, Peter T ; Campbell, Joe C ; Bowers, John E ; Vahala, Kerry J ; Quinlan, Franklyn ; Diddams, Scott A</creatorcontrib><description>Numerous modern technologies are reliant on the low-phase noise and exquisite timing stability of microwave signals. Substantial progress has been made in the field of microwave photonics, whereby low-noise microwave signals are generated by the down-conversion of ultrastable optical references using a frequency comb13. Such systems, however, are constructed with bulk or fibre optics and are difficult to further reduce in size and power consumption. In this work we address this challenge by leveraging advances in integrated photonics to demonstrate low-noise microwave generation via two-point optical frequency division4,5. Narrow-linewidth self-injection-locked integrated lasers6,7 are stabilized to a miniature Fabry-Perot cavity8, and the frequency gap between the lasers is divided with an efficient dark soliton frequency comb9. The stabilized output of the microcomb is photodetected to produce a microwave signal at 20 GHz with phase noise of-96 dBc Hz1 at 100 Hz offset frequency that decreases to -135 dBc Hz1 at 10 kHz offset-values that are unprecedented for an integrated photonic system. All photonic components can be heterogeneously integrated on a single chip, providing a significant advance for the application of photonics to high-precision navigation, communication and timing systems.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1O38/s41586-O24-O7O58-z</identifier><language>eng</language><publisher>London: Nature Publishing Group</publisher><subject>Fiber optics ; Laboratories ; Lasers ; Microwave oscillators ; Microwave photonics ; Navigation systems ; Noise generation ; Optical frequency ; Optics ; Phase noise ; Photonics ; Power ; Power consumption ; Semiconductors ; Solitary waves ; Solitons</subject><ispartof>Nature (London), 2024-03, Vol.627 (8004), p.534-539G</ispartof><rights>Copyright Nature Publishing Group Mar 21, 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Kudelin, Igor</creatorcontrib><creatorcontrib>Groman, William</creatorcontrib><creatorcontrib>Ji, Qing-Xin</creatorcontrib><creatorcontrib>Guo, Joel</creatorcontrib><creatorcontrib>Kelleher, Megan L</creatorcontrib><creatorcontrib>Lee, Dahyeon</creatorcontrib><creatorcontrib>Nakamura, Takuma</creatorcontrib><creatorcontrib>McLemore, Charles A</creatorcontrib><creatorcontrib>Shirmohammadi, Pedram</creatorcontrib><creatorcontrib>Hanifi, Samin</creatorcontrib><creatorcontrib>Cheng, Haotian</creatorcontrib><creatorcontrib>Jin, Naijun</creatorcontrib><creatorcontrib>Wu, Lue</creatorcontrib><creatorcontrib>Halladay, Samuel</creatorcontrib><creatorcontrib>Luo, Yizhi</creatorcontrib><creatorcontrib>Dai, Zhaowei</creatorcontrib><creatorcontrib>Jin, Warren</creatorcontrib><creatorcontrib>Bai, Junwu</creatorcontrib><creatorcontrib>Liu, Yifan</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Xiang, Chao</creatorcontrib><creatorcontrib>Chang, Lin</creatorcontrib><creatorcontrib>Iltchenko, Vladimir</creatorcontrib><creatorcontrib>Miller, Owen</creatorcontrib><creatorcontrib>Matsko, Andrey</creatorcontrib><creatorcontrib>Bowers, Steven M</creatorcontrib><creatorcontrib>Rakich, Peter T</creatorcontrib><creatorcontrib>Campbell, Joe C</creatorcontrib><creatorcontrib>Bowers, John E</creatorcontrib><creatorcontrib>Vahala, Kerry J</creatorcontrib><creatorcontrib>Quinlan, Franklyn</creatorcontrib><creatorcontrib>Diddams, Scott A</creatorcontrib><title>Photonic chip-based low-noise microwave oscillator</title><title>Nature (London)</title><description>Numerous modern technologies are reliant on the low-phase noise and exquisite timing stability of microwave signals. Substantial progress has been made in the field of microwave photonics, whereby low-noise microwave signals are generated by the down-conversion of ultrastable optical references using a frequency comb13. Such systems, however, are constructed with bulk or fibre optics and are difficult to further reduce in size and power consumption. In this work we address this challenge by leveraging advances in integrated photonics to demonstrate low-noise microwave generation via two-point optical frequency division4,5. Narrow-linewidth self-injection-locked integrated lasers6,7 are stabilized to a miniature Fabry-Perot cavity8, and the frequency gap between the lasers is divided with an efficient dark soliton frequency comb9. The stabilized output of the microcomb is photodetected to produce a microwave signal at 20 GHz with phase noise of-96 dBc Hz1 at 100 Hz offset frequency that decreases to -135 dBc Hz1 at 10 kHz offset-values that are unprecedented for an integrated photonic system. All photonic components can be heterogeneously integrated on a single chip, providing a significant advance for the application of photonics to high-precision navigation, communication and timing systems.</description><subject>Fiber optics</subject><subject>Laboratories</subject><subject>Lasers</subject><subject>Microwave oscillators</subject><subject>Microwave photonics</subject><subject>Navigation systems</subject><subject>Noise generation</subject><subject>Optical frequency</subject><subject>Optics</subject><subject>Phase noise</subject><subject>Photonics</subject><subject>Power</subject><subject>Power consumption</subject><subject>Semiconductors</subject><subject>Solitary waves</subject><subject>Solitons</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqNyrsOwiAYQGFiNLFeXsCJxBkFSoHORuOGg3tTK6Y02L9Cq4lPr4MP4HSG7yC0YnTDTKq3UbBMS2K4IEaZTJP3CCVMKEmE1GqMEkq5JlSncopmMTaU0owpkSB-qqGH1lW4ql1HLmW0V-zhRVpw0eK7qwK8yqfFECvnfdlDWKDJrfTRLn-do_Vhf94dSRfgMdjYFw0Mof1SwXOVylzmgqX_XR-rzTve</recordid><startdate>20240321</startdate><enddate>20240321</enddate><creator>Kudelin, Igor</creator><creator>Groman, William</creator><creator>Ji, Qing-Xin</creator><creator>Guo, Joel</creator><creator>Kelleher, Megan L</creator><creator>Lee, Dahyeon</creator><creator>Nakamura, Takuma</creator><creator>McLemore, Charles A</creator><creator>Shirmohammadi, Pedram</creator><creator>Hanifi, Samin</creator><creator>Cheng, Haotian</creator><creator>Jin, Naijun</creator><creator>Wu, Lue</creator><creator>Halladay, Samuel</creator><creator>Luo, Yizhi</creator><creator>Dai, Zhaowei</creator><creator>Jin, Warren</creator><creator>Bai, Junwu</creator><creator>Liu, Yifan</creator><creator>Zhang, Wei</creator><creator>Xiang, Chao</creator><creator>Chang, Lin</creator><creator>Iltchenko, Vladimir</creator><creator>Miller, Owen</creator><creator>Matsko, Andrey</creator><creator>Bowers, Steven M</creator><creator>Rakich, Peter T</creator><creator>Campbell, Joe C</creator><creator>Bowers, John E</creator><creator>Vahala, Kerry J</creator><creator>Quinlan, Franklyn</creator><creator>Diddams, Scott A</creator><general>Nature Publishing Group</general><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>KL.</scope><scope>M7N</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope></search><sort><creationdate>20240321</creationdate><title>Photonic chip-based low-noise microwave oscillator</title><author>Kudelin, Igor ; Groman, William ; Ji, Qing-Xin ; Guo, Joel ; Kelleher, Megan L ; Lee, Dahyeon ; Nakamura, Takuma ; McLemore, Charles A ; Shirmohammadi, Pedram ; Hanifi, Samin ; Cheng, Haotian ; Jin, Naijun ; Wu, Lue ; Halladay, Samuel ; Luo, Yizhi ; Dai, Zhaowei ; Jin, Warren ; Bai, Junwu ; Liu, Yifan ; Zhang, Wei ; Xiang, Chao ; Chang, Lin ; Iltchenko, Vladimir ; Miller, Owen ; Matsko, Andrey ; Bowers, Steven M ; Rakich, Peter T ; Campbell, Joe C ; Bowers, John E ; Vahala, Kerry J ; Quinlan, Franklyn ; Diddams, Scott A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29736969413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Fiber optics</topic><topic>Laboratories</topic><topic>Lasers</topic><topic>Microwave oscillators</topic><topic>Microwave photonics</topic><topic>Navigation systems</topic><topic>Noise generation</topic><topic>Optical frequency</topic><topic>Optics</topic><topic>Phase noise</topic><topic>Photonics</topic><topic>Power</topic><topic>Power consumption</topic><topic>Semiconductors</topic><topic>Solitary waves</topic><topic>Solitons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kudelin, Igor</creatorcontrib><creatorcontrib>Groman, William</creatorcontrib><creatorcontrib>Ji, Qing-Xin</creatorcontrib><creatorcontrib>Guo, Joel</creatorcontrib><creatorcontrib>Kelleher, Megan L</creatorcontrib><creatorcontrib>Lee, Dahyeon</creatorcontrib><creatorcontrib>Nakamura, Takuma</creatorcontrib><creatorcontrib>McLemore, Charles A</creatorcontrib><creatorcontrib>Shirmohammadi, Pedram</creatorcontrib><creatorcontrib>Hanifi, Samin</creatorcontrib><creatorcontrib>Cheng, Haotian</creatorcontrib><creatorcontrib>Jin, Naijun</creatorcontrib><creatorcontrib>Wu, Lue</creatorcontrib><creatorcontrib>Halladay, Samuel</creatorcontrib><creatorcontrib>Luo, Yizhi</creatorcontrib><creatorcontrib>Dai, Zhaowei</creatorcontrib><creatorcontrib>Jin, Warren</creatorcontrib><creatorcontrib>Bai, Junwu</creatorcontrib><creatorcontrib>Liu, Yifan</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Xiang, Chao</creatorcontrib><creatorcontrib>Chang, Lin</creatorcontrib><creatorcontrib>Iltchenko, Vladimir</creatorcontrib><creatorcontrib>Miller, Owen</creatorcontrib><creatorcontrib>Matsko, Andrey</creatorcontrib><creatorcontrib>Bowers, Steven M</creatorcontrib><creatorcontrib>Rakich, Peter T</creatorcontrib><creatorcontrib>Campbell, Joe C</creatorcontrib><creatorcontrib>Bowers, John E</creatorcontrib><creatorcontrib>Vahala, Kerry J</creatorcontrib><creatorcontrib>Quinlan, Franklyn</creatorcontrib><creatorcontrib>Diddams, Scott A</creatorcontrib><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kudelin, Igor</au><au>Groman, William</au><au>Ji, Qing-Xin</au><au>Guo, Joel</au><au>Kelleher, Megan L</au><au>Lee, Dahyeon</au><au>Nakamura, Takuma</au><au>McLemore, Charles A</au><au>Shirmohammadi, Pedram</au><au>Hanifi, Samin</au><au>Cheng, Haotian</au><au>Jin, Naijun</au><au>Wu, Lue</au><au>Halladay, Samuel</au><au>Luo, Yizhi</au><au>Dai, Zhaowei</au><au>Jin, Warren</au><au>Bai, Junwu</au><au>Liu, Yifan</au><au>Zhang, Wei</au><au>Xiang, Chao</au><au>Chang, Lin</au><au>Iltchenko, Vladimir</au><au>Miller, Owen</au><au>Matsko, Andrey</au><au>Bowers, Steven M</au><au>Rakich, Peter T</au><au>Campbell, Joe C</au><au>Bowers, John E</au><au>Vahala, Kerry J</au><au>Quinlan, Franklyn</au><au>Diddams, Scott A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photonic chip-based low-noise microwave oscillator</atitle><jtitle>Nature (London)</jtitle><date>2024-03-21</date><risdate>2024</risdate><volume>627</volume><issue>8004</issue><spage>534</spage><epage>539G</epage><pages>534-539G</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>Numerous modern technologies are reliant on the low-phase noise and exquisite timing stability of microwave signals. Substantial progress has been made in the field of microwave photonics, whereby low-noise microwave signals are generated by the down-conversion of ultrastable optical references using a frequency comb13. Such systems, however, are constructed with bulk or fibre optics and are difficult to further reduce in size and power consumption. In this work we address this challenge by leveraging advances in integrated photonics to demonstrate low-noise microwave generation via two-point optical frequency division4,5. Narrow-linewidth self-injection-locked integrated lasers6,7 are stabilized to a miniature Fabry-Perot cavity8, and the frequency gap between the lasers is divided with an efficient dark soliton frequency comb9. The stabilized output of the microcomb is photodetected to produce a microwave signal at 20 GHz with phase noise of-96 dBc Hz1 at 100 Hz offset frequency that decreases to -135 dBc Hz1 at 10 kHz offset-values that are unprecedented for an integrated photonic system. All photonic components can be heterogeneously integrated on a single chip, providing a significant advance for the application of photonics to high-precision navigation, communication and timing systems.</abstract><cop>London</cop><pub>Nature Publishing Group</pub><doi>10.1O38/s41586-O24-O7O58-z</doi></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2024-03, Vol.627 (8004), p.534-539G
issn 0028-0836
1476-4687
language eng
recordid cdi_proquest_journals_2973696941
source SpringerLink Journals; Nature Journals Online
subjects Fiber optics
Laboratories
Lasers
Microwave oscillators
Microwave photonics
Navigation systems
Noise generation
Optical frequency
Optics
Phase noise
Photonics
Power
Power consumption
Semiconductors
Solitary waves
Solitons
title Photonic chip-based low-noise microwave oscillator
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T05%3A55%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photonic%20chip-based%20low-noise%20microwave%20oscillator&rft.jtitle=Nature%20(London)&rft.au=Kudelin,%20Igor&rft.date=2024-03-21&rft.volume=627&rft.issue=8004&rft.spage=534&rft.epage=539G&rft.pages=534-539G&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1O38/s41586-O24-O7O58-z&rft_dat=%3Cproquest%3E2973696941%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2973696941&rft_id=info:pmid/&rfr_iscdi=true