Nonstandard finite difference schemes for linear and non-linear Fokker–Planck equations

The goal of this paper is to develop a nonstandard finite difference-based numerical technique for solving the one-dimensional linear and non-linear Fokker–Planck equations. Characteristics of the nonstandard finite difference method are presented to understand the development of the proposed method...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of engineering mathematics 2024-04, Vol.145 (1), Article 11
Hauptverfasser: Neena, A. S., Clemence-Mkhope, Dominic P., Awasthi, Ashish
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Journal of engineering mathematics
container_volume 145
creator Neena, A. S.
Clemence-Mkhope, Dominic P.
Awasthi, Ashish
description The goal of this paper is to develop a nonstandard finite difference-based numerical technique for solving the one-dimensional linear and non-linear Fokker–Planck equations. Characteristics of the nonstandard finite difference method are presented to understand the development of the proposed method. Conditions for the dynamic consistency of positivity and stability of the schemes are obtained. Numerical experiments have been carried out to demonstrate the competitiveness of the proposed methods in comparison to some existing standard methods. In support of the proposed method and analysis, the l 2 and l ∞ errors are also presented.
doi_str_mv 10.1007/s10665-024-10346-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2973656089</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2973656089</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-764c38642d65fdc47b800eedde5149ad01daed4f95ca1da4f3a493684f3e940e3</originalsourceid><addsrcrecordid>eNp9kD1OAzEQhS0EEiFwASpL1Ibxz3p3SxQRQIqAAgoqy6zHsPnxJvamoOMO3JCTYNhIdFTzRvrem9Ej5JTDOQcoLxIHrQsGQjEOUmkm9siIF6VkogS5T0YAQjCopDwkRynNAaCulBiR57supN4GZ6Ojvg1tj9S13mPE0CBNzRuuMFHfRbpsA9pIM0tDF9hunXaLBcavj8-HpQ3NguJma_s2hx6TA2-XCU92c0yeplePkxs2u7--nVzOWJNf61mpVSMrrYTThXeNKl8qAETnsOCqtg64s-iUr4vGZqm8tKqWusoCawUox-RsyF3HbrPF1Jt5t40hnzSiLqUuNFR1psRANbFLKaI369iubHw3HMxPhWao0OQKzW-FRmSTHEwpw-EV41_0P65vcvt1-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2973656089</pqid></control><display><type>article</type><title>Nonstandard finite difference schemes for linear and non-linear Fokker–Planck equations</title><source>Springer Nature - Complete Springer Journals</source><creator>Neena, A. S. ; Clemence-Mkhope, Dominic P. ; Awasthi, Ashish</creator><creatorcontrib>Neena, A. S. ; Clemence-Mkhope, Dominic P. ; Awasthi, Ashish</creatorcontrib><description>The goal of this paper is to develop a nonstandard finite difference-based numerical technique for solving the one-dimensional linear and non-linear Fokker–Planck equations. Characteristics of the nonstandard finite difference method are presented to understand the development of the proposed method. Conditions for the dynamic consistency of positivity and stability of the schemes are obtained. Numerical experiments have been carried out to demonstrate the competitiveness of the proposed methods in comparison to some existing standard methods. In support of the proposed method and analysis, the l 2 and l ∞ errors are also presented.</description><identifier>ISSN: 0022-0833</identifier><identifier>EISSN: 1573-2703</identifier><identifier>DOI: 10.1007/s10665-024-10346-2</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Applications of Mathematics ; Computational Mathematics and Numerical Analysis ; Dynamic stability ; Finite difference method ; Fokker-Planck equation ; Mathematical analysis ; Mathematical and Computational Engineering ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Theoretical and Applied Mechanics</subject><ispartof>Journal of engineering mathematics, 2024-04, Vol.145 (1), Article 11</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-764c38642d65fdc47b800eedde5149ad01daed4f95ca1da4f3a493684f3e940e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10665-024-10346-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10665-024-10346-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Neena, A. S.</creatorcontrib><creatorcontrib>Clemence-Mkhope, Dominic P.</creatorcontrib><creatorcontrib>Awasthi, Ashish</creatorcontrib><title>Nonstandard finite difference schemes for linear and non-linear Fokker–Planck equations</title><title>Journal of engineering mathematics</title><addtitle>J Eng Math</addtitle><description>The goal of this paper is to develop a nonstandard finite difference-based numerical technique for solving the one-dimensional linear and non-linear Fokker–Planck equations. Characteristics of the nonstandard finite difference method are presented to understand the development of the proposed method. Conditions for the dynamic consistency of positivity and stability of the schemes are obtained. Numerical experiments have been carried out to demonstrate the competitiveness of the proposed methods in comparison to some existing standard methods. In support of the proposed method and analysis, the l 2 and l ∞ errors are also presented.</description><subject>Applications of Mathematics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Dynamic stability</subject><subject>Finite difference method</subject><subject>Fokker-Planck equation</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Theoretical and Applied Mechanics</subject><issn>0022-0833</issn><issn>1573-2703</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kD1OAzEQhS0EEiFwASpL1Ibxz3p3SxQRQIqAAgoqy6zHsPnxJvamoOMO3JCTYNhIdFTzRvrem9Ej5JTDOQcoLxIHrQsGQjEOUmkm9siIF6VkogS5T0YAQjCopDwkRynNAaCulBiR57supN4GZ6Ojvg1tj9S13mPE0CBNzRuuMFHfRbpsA9pIM0tDF9hunXaLBcavj8-HpQ3NguJma_s2hx6TA2-XCU92c0yeplePkxs2u7--nVzOWJNf61mpVSMrrYTThXeNKl8qAETnsOCqtg64s-iUr4vGZqm8tKqWusoCawUox-RsyF3HbrPF1Jt5t40hnzSiLqUuNFR1psRANbFLKaI369iubHw3HMxPhWao0OQKzW-FRmSTHEwpw-EV41_0P65vcvt1-w</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Neena, A. S.</creator><creator>Clemence-Mkhope, Dominic P.</creator><creator>Awasthi, Ashish</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240401</creationdate><title>Nonstandard finite difference schemes for linear and non-linear Fokker–Planck equations</title><author>Neena, A. S. ; Clemence-Mkhope, Dominic P. ; Awasthi, Ashish</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-764c38642d65fdc47b800eedde5149ad01daed4f95ca1da4f3a493684f3e940e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Applications of Mathematics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Dynamic stability</topic><topic>Finite difference method</topic><topic>Fokker-Planck equation</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Theoretical and Applied Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Neena, A. S.</creatorcontrib><creatorcontrib>Clemence-Mkhope, Dominic P.</creatorcontrib><creatorcontrib>Awasthi, Ashish</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of engineering mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Neena, A. S.</au><au>Clemence-Mkhope, Dominic P.</au><au>Awasthi, Ashish</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonstandard finite difference schemes for linear and non-linear Fokker–Planck equations</atitle><jtitle>Journal of engineering mathematics</jtitle><stitle>J Eng Math</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>145</volume><issue>1</issue><artnum>11</artnum><issn>0022-0833</issn><eissn>1573-2703</eissn><abstract>The goal of this paper is to develop a nonstandard finite difference-based numerical technique for solving the one-dimensional linear and non-linear Fokker–Planck equations. Characteristics of the nonstandard finite difference method are presented to understand the development of the proposed method. Conditions for the dynamic consistency of positivity and stability of the schemes are obtained. Numerical experiments have been carried out to demonstrate the competitiveness of the proposed methods in comparison to some existing standard methods. In support of the proposed method and analysis, the l 2 and l ∞ errors are also presented.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10665-024-10346-2</doi></addata></record>
fulltext fulltext
identifier ISSN: 0022-0833
ispartof Journal of engineering mathematics, 2024-04, Vol.145 (1), Article 11
issn 0022-0833
1573-2703
language eng
recordid cdi_proquest_journals_2973656089
source Springer Nature - Complete Springer Journals
subjects Applications of Mathematics
Computational Mathematics and Numerical Analysis
Dynamic stability
Finite difference method
Fokker-Planck equation
Mathematical analysis
Mathematical and Computational Engineering
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Theoretical and Applied Mechanics
title Nonstandard finite difference schemes for linear and non-linear Fokker–Planck equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T11%3A59%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonstandard%20finite%20difference%20schemes%20for%20linear%20and%20non-linear%20Fokker%E2%80%93Planck%20equations&rft.jtitle=Journal%20of%20engineering%20mathematics&rft.au=Neena,%20A.%20S.&rft.date=2024-04-01&rft.volume=145&rft.issue=1&rft.artnum=11&rft.issn=0022-0833&rft.eissn=1573-2703&rft_id=info:doi/10.1007/s10665-024-10346-2&rft_dat=%3Cproquest_cross%3E2973656089%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2973656089&rft_id=info:pmid/&rfr_iscdi=true