Nonstandard finite difference schemes for linear and non-linear Fokker–Planck equations
The goal of this paper is to develop a nonstandard finite difference-based numerical technique for solving the one-dimensional linear and non-linear Fokker–Planck equations. Characteristics of the nonstandard finite difference method are presented to understand the development of the proposed method...
Gespeichert in:
Veröffentlicht in: | Journal of engineering mathematics 2024-04, Vol.145 (1), Article 11 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Journal of engineering mathematics |
container_volume | 145 |
creator | Neena, A. S. Clemence-Mkhope, Dominic P. Awasthi, Ashish |
description | The goal of this paper is to develop a nonstandard finite difference-based numerical technique for solving the one-dimensional linear and non-linear Fokker–Planck equations. Characteristics of the nonstandard finite difference method are presented to understand the development of the proposed method. Conditions for the dynamic consistency of positivity and stability of the schemes are obtained. Numerical experiments have been carried out to demonstrate the competitiveness of the proposed methods in comparison to some existing standard methods. In support of the proposed method and analysis, the
l
2
and
l
∞
errors are also presented. |
doi_str_mv | 10.1007/s10665-024-10346-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2973656089</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2973656089</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-764c38642d65fdc47b800eedde5149ad01daed4f95ca1da4f3a493684f3e940e3</originalsourceid><addsrcrecordid>eNp9kD1OAzEQhS0EEiFwASpL1Ibxz3p3SxQRQIqAAgoqy6zHsPnxJvamoOMO3JCTYNhIdFTzRvrem9Ej5JTDOQcoLxIHrQsGQjEOUmkm9siIF6VkogS5T0YAQjCopDwkRynNAaCulBiR57supN4GZ6Ojvg1tj9S13mPE0CBNzRuuMFHfRbpsA9pIM0tDF9hunXaLBcavj8-HpQ3NguJma_s2hx6TA2-XCU92c0yeplePkxs2u7--nVzOWJNf61mpVSMrrYTThXeNKl8qAETnsOCqtg64s-iUr4vGZqm8tKqWusoCawUox-RsyF3HbrPF1Jt5t40hnzSiLqUuNFR1psRANbFLKaI369iubHw3HMxPhWao0OQKzW-FRmSTHEwpw-EV41_0P65vcvt1-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2973656089</pqid></control><display><type>article</type><title>Nonstandard finite difference schemes for linear and non-linear Fokker–Planck equations</title><source>Springer Nature - Complete Springer Journals</source><creator>Neena, A. S. ; Clemence-Mkhope, Dominic P. ; Awasthi, Ashish</creator><creatorcontrib>Neena, A. S. ; Clemence-Mkhope, Dominic P. ; Awasthi, Ashish</creatorcontrib><description>The goal of this paper is to develop a nonstandard finite difference-based numerical technique for solving the one-dimensional linear and non-linear Fokker–Planck equations. Characteristics of the nonstandard finite difference method are presented to understand the development of the proposed method. Conditions for the dynamic consistency of positivity and stability of the schemes are obtained. Numerical experiments have been carried out to demonstrate the competitiveness of the proposed methods in comparison to some existing standard methods. In support of the proposed method and analysis, the
l
2
and
l
∞
errors are also presented.</description><identifier>ISSN: 0022-0833</identifier><identifier>EISSN: 1573-2703</identifier><identifier>DOI: 10.1007/s10665-024-10346-2</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Applications of Mathematics ; Computational Mathematics and Numerical Analysis ; Dynamic stability ; Finite difference method ; Fokker-Planck equation ; Mathematical analysis ; Mathematical and Computational Engineering ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Theoretical and Applied Mechanics</subject><ispartof>Journal of engineering mathematics, 2024-04, Vol.145 (1), Article 11</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-764c38642d65fdc47b800eedde5149ad01daed4f95ca1da4f3a493684f3e940e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10665-024-10346-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10665-024-10346-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Neena, A. S.</creatorcontrib><creatorcontrib>Clemence-Mkhope, Dominic P.</creatorcontrib><creatorcontrib>Awasthi, Ashish</creatorcontrib><title>Nonstandard finite difference schemes for linear and non-linear Fokker–Planck equations</title><title>Journal of engineering mathematics</title><addtitle>J Eng Math</addtitle><description>The goal of this paper is to develop a nonstandard finite difference-based numerical technique for solving the one-dimensional linear and non-linear Fokker–Planck equations. Characteristics of the nonstandard finite difference method are presented to understand the development of the proposed method. Conditions for the dynamic consistency of positivity and stability of the schemes are obtained. Numerical experiments have been carried out to demonstrate the competitiveness of the proposed methods in comparison to some existing standard methods. In support of the proposed method and analysis, the
l
2
and
l
∞
errors are also presented.</description><subject>Applications of Mathematics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Dynamic stability</subject><subject>Finite difference method</subject><subject>Fokker-Planck equation</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Theoretical and Applied Mechanics</subject><issn>0022-0833</issn><issn>1573-2703</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kD1OAzEQhS0EEiFwASpL1Ibxz3p3SxQRQIqAAgoqy6zHsPnxJvamoOMO3JCTYNhIdFTzRvrem9Ej5JTDOQcoLxIHrQsGQjEOUmkm9siIF6VkogS5T0YAQjCopDwkRynNAaCulBiR57supN4GZ6Ojvg1tj9S13mPE0CBNzRuuMFHfRbpsA9pIM0tDF9hunXaLBcavj8-HpQ3NguJma_s2hx6TA2-XCU92c0yeplePkxs2u7--nVzOWJNf61mpVSMrrYTThXeNKl8qAETnsOCqtg64s-iUr4vGZqm8tKqWusoCawUox-RsyF3HbrPF1Jt5t40hnzSiLqUuNFR1psRANbFLKaI369iubHw3HMxPhWao0OQKzW-FRmSTHEwpw-EV41_0P65vcvt1-w</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Neena, A. S.</creator><creator>Clemence-Mkhope, Dominic P.</creator><creator>Awasthi, Ashish</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240401</creationdate><title>Nonstandard finite difference schemes for linear and non-linear Fokker–Planck equations</title><author>Neena, A. S. ; Clemence-Mkhope, Dominic P. ; Awasthi, Ashish</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-764c38642d65fdc47b800eedde5149ad01daed4f95ca1da4f3a493684f3e940e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Applications of Mathematics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Dynamic stability</topic><topic>Finite difference method</topic><topic>Fokker-Planck equation</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Theoretical and Applied Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Neena, A. S.</creatorcontrib><creatorcontrib>Clemence-Mkhope, Dominic P.</creatorcontrib><creatorcontrib>Awasthi, Ashish</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of engineering mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Neena, A. S.</au><au>Clemence-Mkhope, Dominic P.</au><au>Awasthi, Ashish</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonstandard finite difference schemes for linear and non-linear Fokker–Planck equations</atitle><jtitle>Journal of engineering mathematics</jtitle><stitle>J Eng Math</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>145</volume><issue>1</issue><artnum>11</artnum><issn>0022-0833</issn><eissn>1573-2703</eissn><abstract>The goal of this paper is to develop a nonstandard finite difference-based numerical technique for solving the one-dimensional linear and non-linear Fokker–Planck equations. Characteristics of the nonstandard finite difference method are presented to understand the development of the proposed method. Conditions for the dynamic consistency of positivity and stability of the schemes are obtained. Numerical experiments have been carried out to demonstrate the competitiveness of the proposed methods in comparison to some existing standard methods. In support of the proposed method and analysis, the
l
2
and
l
∞
errors are also presented.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10665-024-10346-2</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-0833 |
ispartof | Journal of engineering mathematics, 2024-04, Vol.145 (1), Article 11 |
issn | 0022-0833 1573-2703 |
language | eng |
recordid | cdi_proquest_journals_2973656089 |
source | Springer Nature - Complete Springer Journals |
subjects | Applications of Mathematics Computational Mathematics and Numerical Analysis Dynamic stability Finite difference method Fokker-Planck equation Mathematical analysis Mathematical and Computational Engineering Mathematical Modeling and Industrial Mathematics Mathematics Mathematics and Statistics Theoretical and Applied Mechanics |
title | Nonstandard finite difference schemes for linear and non-linear Fokker–Planck equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T11%3A59%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonstandard%20finite%20difference%20schemes%20for%20linear%20and%20non-linear%20Fokker%E2%80%93Planck%20equations&rft.jtitle=Journal%20of%20engineering%20mathematics&rft.au=Neena,%20A.%20S.&rft.date=2024-04-01&rft.volume=145&rft.issue=1&rft.artnum=11&rft.issn=0022-0833&rft.eissn=1573-2703&rft_id=info:doi/10.1007/s10665-024-10346-2&rft_dat=%3Cproquest_cross%3E2973656089%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2973656089&rft_id=info:pmid/&rfr_iscdi=true |