Dynamic response and failure process of horizontal-layered fractured structure rock slope under strong earthquake

Rock slope with horizontal-layered fractured structure (HLFS) has high stability in its natural state. However, a strong earthquake can induce rock fissure expansion, ultimately leading to slope failure. In this study, the dynamic response, failure mode, and spectral characteristics of rock slope wi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mountain science 2024-03, Vol.21 (3), p.882-900
Hauptverfasser: Wang, Tong, Liu, Xianfeng, Hou, Zhaoxu, Xu, Jiahang, Zhang, Jun, Yuan, Shengyang, Jiang, Guanlu, Hu, Jinshan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 900
container_issue 3
container_start_page 882
container_title Journal of mountain science
container_volume 21
creator Wang, Tong
Liu, Xianfeng
Hou, Zhaoxu
Xu, Jiahang
Zhang, Jun
Yuan, Shengyang
Jiang, Guanlu
Hu, Jinshan
description Rock slope with horizontal-layered fractured structure (HLFS) has high stability in its natural state. However, a strong earthquake can induce rock fissure expansion, ultimately leading to slope failure. In this study, the dynamic response, failure mode, and spectral characteristics of rock slope with HLFS under strong earthquake conditions were investigated based on the large-scale shaking table model test. On this basis, multiple sets of numerical calculation models were further established by UDEC discrete element program. Five influencing factors were considered in the parametric study of numerical simulations, including slope height, slope angle, bedding-plane spacing and secondary joint spacing as well as bedrock dip angle. The results showed that the failure process of rock slope with HLFS under earthquake action is mainly divided into four phases, i.e., the tensile crack of the slope shoulder joints and shear dislocation at the top bedding plane, the extension of vertical joint cracks and increase of shear displacement, the formation of step-through sliding surfaces and the instability, and finally collapse of fractured rock mass. The acceleration response of slopes exhibits elevation amplification effect and surface effect. Numerical simulations indicate that the seismic stability of slopes with HLFS exhibits a negative correlation with slope height and angle, but a positive correlation with bedding-plane spacing, joint spacing, and bedrock dip angle. The results of this study can provide a reference for seismic stability evaluation of weathered rock slopes.
doi_str_mv 10.1007/s11629-023-8454-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2973655926</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2973655926</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-cb6079cceb2137c2421c9793e352ca047841071f6fbe3bfbdf3cb908db69caa43</originalsourceid><addsrcrecordid>eNp1kEtPwzAQhC0EEuXxA7hZ4mzwI7HjIypPqRIXOFuOs2nTpnFqJ4fy63EIEidOO9J-M6sdhG4YvWOUqvvImOSaUC5IkeUZ4SdowbQWhArOTpOWihMpmDxHFzFuKZVKF2yBDo_Hzu4bhwPE3ncRsO0qXNumHQPgPngHMWJf440PzZfvBtuS1h4hQKKCdcM4qTiE8UfiZNjh2Poe8NhVEKaV79YYbBg2h9Hu4Aqd1baNcP07L9Hn89PH8pWs3l_elg8r4rgsBuJKSZV2DkrOhHI848xppQWInDtLM1VkjCpWy7oEUdZlVQtXalpUpdTO2kxcots5Nz1xGCEOZuvH0KWThmslZJ5rLhPFZsoFH2OA2vSh2dtwNIyaqVkzN2tSs2Zq1vDk4bMnJrZbQ_hL_t_0Dfy_fqk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2973655926</pqid></control><display><type>article</type><title>Dynamic response and failure process of horizontal-layered fractured structure rock slope under strong earthquake</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Wang, Tong ; Liu, Xianfeng ; Hou, Zhaoxu ; Xu, Jiahang ; Zhang, Jun ; Yuan, Shengyang ; Jiang, Guanlu ; Hu, Jinshan</creator><creatorcontrib>Wang, Tong ; Liu, Xianfeng ; Hou, Zhaoxu ; Xu, Jiahang ; Zhang, Jun ; Yuan, Shengyang ; Jiang, Guanlu ; Hu, Jinshan</creatorcontrib><description>Rock slope with horizontal-layered fractured structure (HLFS) has high stability in its natural state. However, a strong earthquake can induce rock fissure expansion, ultimately leading to slope failure. In this study, the dynamic response, failure mode, and spectral characteristics of rock slope with HLFS under strong earthquake conditions were investigated based on the large-scale shaking table model test. On this basis, multiple sets of numerical calculation models were further established by UDEC discrete element program. Five influencing factors were considered in the parametric study of numerical simulations, including slope height, slope angle, bedding-plane spacing and secondary joint spacing as well as bedrock dip angle. The results showed that the failure process of rock slope with HLFS under earthquake action is mainly divided into four phases, i.e., the tensile crack of the slope shoulder joints and shear dislocation at the top bedding plane, the extension of vertical joint cracks and increase of shear displacement, the formation of step-through sliding surfaces and the instability, and finally collapse of fractured rock mass. The acceleration response of slopes exhibits elevation amplification effect and surface effect. Numerical simulations indicate that the seismic stability of slopes with HLFS exhibits a negative correlation with slope height and angle, but a positive correlation with bedding-plane spacing, joint spacing, and bedrock dip angle. The results of this study can provide a reference for seismic stability evaluation of weathered rock slopes.</description><identifier>ISSN: 1672-6316</identifier><identifier>EISSN: 1993-0321</identifier><identifier>EISSN: 1008-2786</identifier><identifier>DOI: 10.1007/s11629-023-8454-2</identifier><language>eng</language><publisher>Heidelberg: Science Press</publisher><subject>Bedding ; Bedrock ; Correlation ; Dynamic response ; Earth and Environmental Science ; Earth Sciences ; Earthquakes ; Ecology ; Environment ; Failure modes ; Geography ; Height ; Mathematical models ; Original Article ; Rock ; Rock masses ; Rocks ; Seismic activity ; Seismic stability ; Shake table tests ; Shear ; Slope ; Slope stability ; Stability ; Stability analysis ; Surface stability</subject><ispartof>Journal of mountain science, 2024-03, Vol.21 (3), p.882-900</ispartof><rights>Science Press, Institute of Mountain Hazards and Environment, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2024</rights><rights>Science Press, Institute of Mountain Hazards and Environment, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2024.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-cb6079cceb2137c2421c9793e352ca047841071f6fbe3bfbdf3cb908db69caa43</cites><orcidid>0000-0003-4350-4391 ; 0009-0001-9601-1104 ; 0009-0003-1630-2134 ; 0009-0006-7316-6986 ; 0000-0002-0900-3326 ; 0009-0004-3421-3546 ; 0000-0001-8891-9801 ; 0009-0001-0262-4250</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11629-023-8454-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11629-023-8454-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Wang, Tong</creatorcontrib><creatorcontrib>Liu, Xianfeng</creatorcontrib><creatorcontrib>Hou, Zhaoxu</creatorcontrib><creatorcontrib>Xu, Jiahang</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><creatorcontrib>Yuan, Shengyang</creatorcontrib><creatorcontrib>Jiang, Guanlu</creatorcontrib><creatorcontrib>Hu, Jinshan</creatorcontrib><title>Dynamic response and failure process of horizontal-layered fractured structure rock slope under strong earthquake</title><title>Journal of mountain science</title><addtitle>J. Mt. Sci</addtitle><description>Rock slope with horizontal-layered fractured structure (HLFS) has high stability in its natural state. However, a strong earthquake can induce rock fissure expansion, ultimately leading to slope failure. In this study, the dynamic response, failure mode, and spectral characteristics of rock slope with HLFS under strong earthquake conditions were investigated based on the large-scale shaking table model test. On this basis, multiple sets of numerical calculation models were further established by UDEC discrete element program. Five influencing factors were considered in the parametric study of numerical simulations, including slope height, slope angle, bedding-plane spacing and secondary joint spacing as well as bedrock dip angle. The results showed that the failure process of rock slope with HLFS under earthquake action is mainly divided into four phases, i.e., the tensile crack of the slope shoulder joints and shear dislocation at the top bedding plane, the extension of vertical joint cracks and increase of shear displacement, the formation of step-through sliding surfaces and the instability, and finally collapse of fractured rock mass. The acceleration response of slopes exhibits elevation amplification effect and surface effect. Numerical simulations indicate that the seismic stability of slopes with HLFS exhibits a negative correlation with slope height and angle, but a positive correlation with bedding-plane spacing, joint spacing, and bedrock dip angle. The results of this study can provide a reference for seismic stability evaluation of weathered rock slopes.</description><subject>Bedding</subject><subject>Bedrock</subject><subject>Correlation</subject><subject>Dynamic response</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earthquakes</subject><subject>Ecology</subject><subject>Environment</subject><subject>Failure modes</subject><subject>Geography</subject><subject>Height</subject><subject>Mathematical models</subject><subject>Original Article</subject><subject>Rock</subject><subject>Rock masses</subject><subject>Rocks</subject><subject>Seismic activity</subject><subject>Seismic stability</subject><subject>Shake table tests</subject><subject>Shear</subject><subject>Slope</subject><subject>Slope stability</subject><subject>Stability</subject><subject>Stability analysis</subject><subject>Surface stability</subject><issn>1672-6316</issn><issn>1993-0321</issn><issn>1008-2786</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kEtPwzAQhC0EEuXxA7hZ4mzwI7HjIypPqRIXOFuOs2nTpnFqJ4fy63EIEidOO9J-M6sdhG4YvWOUqvvImOSaUC5IkeUZ4SdowbQWhArOTpOWihMpmDxHFzFuKZVKF2yBDo_Hzu4bhwPE3ncRsO0qXNumHQPgPngHMWJf440PzZfvBtuS1h4hQKKCdcM4qTiE8UfiZNjh2Poe8NhVEKaV79YYbBg2h9Hu4Aqd1baNcP07L9Hn89PH8pWs3l_elg8r4rgsBuJKSZV2DkrOhHI848xppQWInDtLM1VkjCpWy7oEUdZlVQtXalpUpdTO2kxcots5Nz1xGCEOZuvH0KWThmslZJ5rLhPFZsoFH2OA2vSh2dtwNIyaqVkzN2tSs2Zq1vDk4bMnJrZbQ_hL_t_0Dfy_fqk</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Wang, Tong</creator><creator>Liu, Xianfeng</creator><creator>Hou, Zhaoxu</creator><creator>Xu, Jiahang</creator><creator>Zhang, Jun</creator><creator>Yuan, Shengyang</creator><creator>Jiang, Guanlu</creator><creator>Hu, Jinshan</creator><general>Science Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-4350-4391</orcidid><orcidid>https://orcid.org/0009-0001-9601-1104</orcidid><orcidid>https://orcid.org/0009-0003-1630-2134</orcidid><orcidid>https://orcid.org/0009-0006-7316-6986</orcidid><orcidid>https://orcid.org/0000-0002-0900-3326</orcidid><orcidid>https://orcid.org/0009-0004-3421-3546</orcidid><orcidid>https://orcid.org/0000-0001-8891-9801</orcidid><orcidid>https://orcid.org/0009-0001-0262-4250</orcidid></search><sort><creationdate>20240301</creationdate><title>Dynamic response and failure process of horizontal-layered fractured structure rock slope under strong earthquake</title><author>Wang, Tong ; Liu, Xianfeng ; Hou, Zhaoxu ; Xu, Jiahang ; Zhang, Jun ; Yuan, Shengyang ; Jiang, Guanlu ; Hu, Jinshan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-cb6079cceb2137c2421c9793e352ca047841071f6fbe3bfbdf3cb908db69caa43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bedding</topic><topic>Bedrock</topic><topic>Correlation</topic><topic>Dynamic response</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earthquakes</topic><topic>Ecology</topic><topic>Environment</topic><topic>Failure modes</topic><topic>Geography</topic><topic>Height</topic><topic>Mathematical models</topic><topic>Original Article</topic><topic>Rock</topic><topic>Rock masses</topic><topic>Rocks</topic><topic>Seismic activity</topic><topic>Seismic stability</topic><topic>Shake table tests</topic><topic>Shear</topic><topic>Slope</topic><topic>Slope stability</topic><topic>Stability</topic><topic>Stability analysis</topic><topic>Surface stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Tong</creatorcontrib><creatorcontrib>Liu, Xianfeng</creatorcontrib><creatorcontrib>Hou, Zhaoxu</creatorcontrib><creatorcontrib>Xu, Jiahang</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><creatorcontrib>Yuan, Shengyang</creatorcontrib><creatorcontrib>Jiang, Guanlu</creatorcontrib><creatorcontrib>Hu, Jinshan</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Journal of mountain science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Tong</au><au>Liu, Xianfeng</au><au>Hou, Zhaoxu</au><au>Xu, Jiahang</au><au>Zhang, Jun</au><au>Yuan, Shengyang</au><au>Jiang, Guanlu</au><au>Hu, Jinshan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic response and failure process of horizontal-layered fractured structure rock slope under strong earthquake</atitle><jtitle>Journal of mountain science</jtitle><stitle>J. Mt. Sci</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>21</volume><issue>3</issue><spage>882</spage><epage>900</epage><pages>882-900</pages><issn>1672-6316</issn><eissn>1993-0321</eissn><eissn>1008-2786</eissn><abstract>Rock slope with horizontal-layered fractured structure (HLFS) has high stability in its natural state. However, a strong earthquake can induce rock fissure expansion, ultimately leading to slope failure. In this study, the dynamic response, failure mode, and spectral characteristics of rock slope with HLFS under strong earthquake conditions were investigated based on the large-scale shaking table model test. On this basis, multiple sets of numerical calculation models were further established by UDEC discrete element program. Five influencing factors were considered in the parametric study of numerical simulations, including slope height, slope angle, bedding-plane spacing and secondary joint spacing as well as bedrock dip angle. The results showed that the failure process of rock slope with HLFS under earthquake action is mainly divided into four phases, i.e., the tensile crack of the slope shoulder joints and shear dislocation at the top bedding plane, the extension of vertical joint cracks and increase of shear displacement, the formation of step-through sliding surfaces and the instability, and finally collapse of fractured rock mass. The acceleration response of slopes exhibits elevation amplification effect and surface effect. Numerical simulations indicate that the seismic stability of slopes with HLFS exhibits a negative correlation with slope height and angle, but a positive correlation with bedding-plane spacing, joint spacing, and bedrock dip angle. The results of this study can provide a reference for seismic stability evaluation of weathered rock slopes.</abstract><cop>Heidelberg</cop><pub>Science Press</pub><doi>10.1007/s11629-023-8454-2</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-4350-4391</orcidid><orcidid>https://orcid.org/0009-0001-9601-1104</orcidid><orcidid>https://orcid.org/0009-0003-1630-2134</orcidid><orcidid>https://orcid.org/0009-0006-7316-6986</orcidid><orcidid>https://orcid.org/0000-0002-0900-3326</orcidid><orcidid>https://orcid.org/0009-0004-3421-3546</orcidid><orcidid>https://orcid.org/0000-0001-8891-9801</orcidid><orcidid>https://orcid.org/0009-0001-0262-4250</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1672-6316
ispartof Journal of mountain science, 2024-03, Vol.21 (3), p.882-900
issn 1672-6316
1993-0321
1008-2786
language eng
recordid cdi_proquest_journals_2973655926
source Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings
subjects Bedding
Bedrock
Correlation
Dynamic response
Earth and Environmental Science
Earth Sciences
Earthquakes
Ecology
Environment
Failure modes
Geography
Height
Mathematical models
Original Article
Rock
Rock masses
Rocks
Seismic activity
Seismic stability
Shake table tests
Shear
Slope
Slope stability
Stability
Stability analysis
Surface stability
title Dynamic response and failure process of horizontal-layered fractured structure rock slope under strong earthquake
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T00%3A35%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20response%20and%20failure%20process%20of%20horizontal-layered%20fractured%20structure%20rock%20slope%20under%20strong%20earthquake&rft.jtitle=Journal%20of%20mountain%20science&rft.au=Wang,%20Tong&rft.date=2024-03-01&rft.volume=21&rft.issue=3&rft.spage=882&rft.epage=900&rft.pages=882-900&rft.issn=1672-6316&rft.eissn=1993-0321&rft_id=info:doi/10.1007/s11629-023-8454-2&rft_dat=%3Cproquest_cross%3E2973655926%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2973655926&rft_id=info:pmid/&rfr_iscdi=true