Performance of high-resolution satellite rainfall datasets in developing rainfall-duration threshold for landslide incidents over Badung Regency

Satellite-based rainfall datasets provide high-resolution worldwide rainfall information, which has potential used in identifying rainfall conditions that trigger landslides. Landslides can be forecasted by rainfall thresholds which is used as an early warning system. The threshold model used needs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IOP conference series. Earth and environmental science 2024-03, Vol.1311 (1), p.12060
Hauptverfasser: Aryastana, P, Dewi, L, Wahyuni, P I
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 12060
container_title IOP conference series. Earth and environmental science
container_volume 1311
creator Aryastana, P
Dewi, L
Wahyuni, P I
description Satellite-based rainfall datasets provide high-resolution worldwide rainfall information, which has potential used in identifying rainfall conditions that trigger landslides. Landslides can be forecasted by rainfall thresholds which is used as an early warning system. The threshold model used needs to be validated to know the accuracy in forecasting landslide occurrences provoked by rainfall events. The objective of the current study is to evaluate the ability of three high-resolution satellite-based rainfall datasets (IMERG, GSMaP, and PERSIANN) to develop a rainfall thresholds model for landslide occurrences in Badung Regency. The recent study used cumulative rainfall events (1, 3, 5, 7, 10, 15, 21, and 30 days) leading up to the incidents of landslides. The determination of rainfall threshold values used the statistical distribution namely: first (Q1), second (Q2), and third quartile (Q3). Validation of rainfall threshold results was conducted utilizing receiver operating characteristic (ROC) curves and the area under curve (AUC). The analysis results show that the first quartile (Q1) exhibited the finest accuracy and gives a good estimation of landslide occurrence. Moreover, among all cumulative rainfall events, the 15-day cumulative rainfall demonstrates the highest AUC value (> 0.75), implying a greater likelihood of triggering landslide events over Badung Regency.
doi_str_mv 10.1088/1755-1315/1311/1/012060
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2973444875</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2973444875</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2730-6d4e0aeaccb0723321c3350822c5e58b67ca914aaa4a4ece01299b7491c670083</originalsourceid><addsrcrecordid>eNqFkN1KJDEQhRtR0FWfwYBXXrSTdNKd7kuVURcExZ_rUJNUz0Ri0pt0C76Fj2xmZ5llYcGbqoI65ztwiuKE0XNG23bGZF2XjLN6lgebsRllFW3oTnGw_exubyr3ix8pvVLaSMG7g-LzAWMf4ht4jST0ZGWXqzJiCm4abfAkwYjO2RFJBOt7cI4YGCHhmIj1xOA7ujBYv9z-SzNF-O0dVxm0Cs6QnEAceJOcNZh9Oi-fCeEdI7kEM2X_Iy7R64-jYi9TEh7_2YfFy_X8-eq2vLu_-Xl1cVfqSnJaNkYgBQStF1RWnFdMc17Ttqp0jXW7aKSGjgkAECBQYy6l6xZSdEw3ktKWHxanG-4Qw68J06hewxR9jlRVJ7kQopV1VsmNSseQUsReDdG-QfxQjKp1_WpdrFqXvB5MMbWpPzvPNk4bhr_o-fzpX50aTJ-1_D_a7xK-AERslyc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2973444875</pqid></control><display><type>article</type><title>Performance of high-resolution satellite rainfall datasets in developing rainfall-duration threshold for landslide incidents over Badung Regency</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Institute of Physics Open Access Journal Titles</source><source>IOPscience extra</source><creator>Aryastana, P ; Dewi, L ; Wahyuni, P I</creator><creatorcontrib>Aryastana, P ; Dewi, L ; Wahyuni, P I</creatorcontrib><description>Satellite-based rainfall datasets provide high-resolution worldwide rainfall information, which has potential used in identifying rainfall conditions that trigger landslides. Landslides can be forecasted by rainfall thresholds which is used as an early warning system. The threshold model used needs to be validated to know the accuracy in forecasting landslide occurrences provoked by rainfall events. The objective of the current study is to evaluate the ability of three high-resolution satellite-based rainfall datasets (IMERG, GSMaP, and PERSIANN) to develop a rainfall thresholds model for landslide occurrences in Badung Regency. The recent study used cumulative rainfall events (1, 3, 5, 7, 10, 15, 21, and 30 days) leading up to the incidents of landslides. The determination of rainfall threshold values used the statistical distribution namely: first (Q1), second (Q2), and third quartile (Q3). Validation of rainfall threshold results was conducted utilizing receiver operating characteristic (ROC) curves and the area under curve (AUC). The analysis results show that the first quartile (Q1) exhibited the finest accuracy and gives a good estimation of landslide occurrence. Moreover, among all cumulative rainfall events, the 15-day cumulative rainfall demonstrates the highest AUC value (&gt; 0.75), implying a greater likelihood of triggering landslide events over Badung Regency.</description><identifier>ISSN: 1755-1307</identifier><identifier>EISSN: 1755-1315</identifier><identifier>DOI: 10.1088/1755-1315/1311/1/012060</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Accuracy ; Datasets ; Early warning systems ; High resolution ; landslide ; Landslides ; Landslides &amp; mudslides ; Mathematical models ; Quartiles ; Rainfall ; rainfall threshold ; Thresholds</subject><ispartof>IOP conference series. Earth and environmental science, 2024-03, Vol.1311 (1), p.12060</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>Published under licence by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2730-6d4e0aeaccb0723321c3350822c5e58b67ca914aaa4a4ece01299b7491c670083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1755-1315/1311/1/012060/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>315,781,785,27929,27930,38873,38895,53845,53872</link.rule.ids></links><search><creatorcontrib>Aryastana, P</creatorcontrib><creatorcontrib>Dewi, L</creatorcontrib><creatorcontrib>Wahyuni, P I</creatorcontrib><title>Performance of high-resolution satellite rainfall datasets in developing rainfall-duration threshold for landslide incidents over Badung Regency</title><title>IOP conference series. Earth and environmental science</title><addtitle>IOP Conf. Ser.: Earth Environ. Sci</addtitle><description>Satellite-based rainfall datasets provide high-resolution worldwide rainfall information, which has potential used in identifying rainfall conditions that trigger landslides. Landslides can be forecasted by rainfall thresholds which is used as an early warning system. The threshold model used needs to be validated to know the accuracy in forecasting landslide occurrences provoked by rainfall events. The objective of the current study is to evaluate the ability of three high-resolution satellite-based rainfall datasets (IMERG, GSMaP, and PERSIANN) to develop a rainfall thresholds model for landslide occurrences in Badung Regency. The recent study used cumulative rainfall events (1, 3, 5, 7, 10, 15, 21, and 30 days) leading up to the incidents of landslides. The determination of rainfall threshold values used the statistical distribution namely: first (Q1), second (Q2), and third quartile (Q3). Validation of rainfall threshold results was conducted utilizing receiver operating characteristic (ROC) curves and the area under curve (AUC). The analysis results show that the first quartile (Q1) exhibited the finest accuracy and gives a good estimation of landslide occurrence. Moreover, among all cumulative rainfall events, the 15-day cumulative rainfall demonstrates the highest AUC value (&gt; 0.75), implying a greater likelihood of triggering landslide events over Badung Regency.</description><subject>Accuracy</subject><subject>Datasets</subject><subject>Early warning systems</subject><subject>High resolution</subject><subject>landslide</subject><subject>Landslides</subject><subject>Landslides &amp; mudslides</subject><subject>Mathematical models</subject><subject>Quartiles</subject><subject>Rainfall</subject><subject>rainfall threshold</subject><subject>Thresholds</subject><issn>1755-1307</issn><issn>1755-1315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkN1KJDEQhRtR0FWfwYBXXrSTdNKd7kuVURcExZ_rUJNUz0Ri0pt0C76Fj2xmZ5llYcGbqoI65ztwiuKE0XNG23bGZF2XjLN6lgebsRllFW3oTnGw_exubyr3ix8pvVLaSMG7g-LzAWMf4ht4jST0ZGWXqzJiCm4abfAkwYjO2RFJBOt7cI4YGCHhmIj1xOA7ujBYv9z-SzNF-O0dVxm0Cs6QnEAceJOcNZh9Oi-fCeEdI7kEM2X_Iy7R64-jYi9TEh7_2YfFy_X8-eq2vLu_-Xl1cVfqSnJaNkYgBQStF1RWnFdMc17Ttqp0jXW7aKSGjgkAECBQYy6l6xZSdEw3ktKWHxanG-4Qw68J06hewxR9jlRVJ7kQopV1VsmNSseQUsReDdG-QfxQjKp1_WpdrFqXvB5MMbWpPzvPNk4bhr_o-fzpX50aTJ-1_D_a7xK-AERslyc</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Aryastana, P</creator><creator>Dewi, L</creator><creator>Wahyuni, P I</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope></search><sort><creationdate>20240301</creationdate><title>Performance of high-resolution satellite rainfall datasets in developing rainfall-duration threshold for landslide incidents over Badung Regency</title><author>Aryastana, P ; Dewi, L ; Wahyuni, P I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2730-6d4e0aeaccb0723321c3350822c5e58b67ca914aaa4a4ece01299b7491c670083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Datasets</topic><topic>Early warning systems</topic><topic>High resolution</topic><topic>landslide</topic><topic>Landslides</topic><topic>Landslides &amp; mudslides</topic><topic>Mathematical models</topic><topic>Quartiles</topic><topic>Rainfall</topic><topic>rainfall threshold</topic><topic>Thresholds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aryastana, P</creatorcontrib><creatorcontrib>Dewi, L</creatorcontrib><creatorcontrib>Wahyuni, P I</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Environmental Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><jtitle>IOP conference series. Earth and environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aryastana, P</au><au>Dewi, L</au><au>Wahyuni, P I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance of high-resolution satellite rainfall datasets in developing rainfall-duration threshold for landslide incidents over Badung Regency</atitle><jtitle>IOP conference series. Earth and environmental science</jtitle><addtitle>IOP Conf. Ser.: Earth Environ. Sci</addtitle><date>2024-03-01</date><risdate>2024</risdate><volume>1311</volume><issue>1</issue><spage>12060</spage><pages>12060-</pages><issn>1755-1307</issn><eissn>1755-1315</eissn><abstract>Satellite-based rainfall datasets provide high-resolution worldwide rainfall information, which has potential used in identifying rainfall conditions that trigger landslides. Landslides can be forecasted by rainfall thresholds which is used as an early warning system. The threshold model used needs to be validated to know the accuracy in forecasting landslide occurrences provoked by rainfall events. The objective of the current study is to evaluate the ability of three high-resolution satellite-based rainfall datasets (IMERG, GSMaP, and PERSIANN) to develop a rainfall thresholds model for landslide occurrences in Badung Regency. The recent study used cumulative rainfall events (1, 3, 5, 7, 10, 15, 21, and 30 days) leading up to the incidents of landslides. The determination of rainfall threshold values used the statistical distribution namely: first (Q1), second (Q2), and third quartile (Q3). Validation of rainfall threshold results was conducted utilizing receiver operating characteristic (ROC) curves and the area under curve (AUC). The analysis results show that the first quartile (Q1) exhibited the finest accuracy and gives a good estimation of landslide occurrence. Moreover, among all cumulative rainfall events, the 15-day cumulative rainfall demonstrates the highest AUC value (&gt; 0.75), implying a greater likelihood of triggering landslide events over Badung Regency.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1755-1315/1311/1/012060</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1755-1307
ispartof IOP conference series. Earth and environmental science, 2024-03, Vol.1311 (1), p.12060
issn 1755-1307
1755-1315
language eng
recordid cdi_proquest_journals_2973444875
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Institute of Physics Open Access Journal Titles; IOPscience extra
subjects Accuracy
Datasets
Early warning systems
High resolution
landslide
Landslides
Landslides & mudslides
Mathematical models
Quartiles
Rainfall
rainfall threshold
Thresholds
title Performance of high-resolution satellite rainfall datasets in developing rainfall-duration threshold for landslide incidents over Badung Regency
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T03%3A30%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20of%20high-resolution%20satellite%20rainfall%20datasets%20in%20developing%20rainfall-duration%20threshold%20for%20landslide%20incidents%20over%20Badung%20Regency&rft.jtitle=IOP%20conference%20series.%20Earth%20and%20environmental%20science&rft.au=Aryastana,%20P&rft.date=2024-03-01&rft.volume=1311&rft.issue=1&rft.spage=12060&rft.pages=12060-&rft.issn=1755-1307&rft.eissn=1755-1315&rft_id=info:doi/10.1088/1755-1315/1311/1/012060&rft_dat=%3Cproquest_cross%3E2973444875%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2973444875&rft_id=info:pmid/&rfr_iscdi=true