A survey on large language model based autonomous agents

Autonomous agents have long been a research focus in academic and industry communities. Previous research often focuses on training agents with limited knowledge within isolated environments, which diverges significantly from human learning processes, and makes the agents hard to achieve human-like...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers of Computer Science 2024-12, Vol.18 (6), p.186345, Article 186345
Hauptverfasser: Wang, Lei, Ma, Chen, Feng, Xueyang, Zhang, Zeyu, Yang, Hao, Zhang, Jingsen, Chen, Zhiyuan, Tang, Jiakai, Chen, Xu, Lin, Yankai, Zhao, Wayne Xin, Wei, Zhewei, Wen, Jirong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page 186345
container_title Frontiers of Computer Science
container_volume 18
creator Wang, Lei
Ma, Chen
Feng, Xueyang
Zhang, Zeyu
Yang, Hao
Zhang, Jingsen
Chen, Zhiyuan
Tang, Jiakai
Chen, Xu
Lin, Yankai
Zhao, Wayne Xin
Wei, Zhewei
Wen, Jirong
description Autonomous agents have long been a research focus in academic and industry communities. Previous research often focuses on training agents with limited knowledge within isolated environments, which diverges significantly from human learning processes, and makes the agents hard to achieve human-like decisions. Recently, through the acquisition of vast amounts of Web knowledge, large language models (LLMs) have shown potential in human-level intelligence, leading to a surge in research on LLM-based autonomous agents. In this paper, we present a comprehensive survey of these studies, delivering a systematic review of LLM-based autonomous agents from a holistic perspective. We first discuss the construction of LLM-based autonomous agents, proposing a unified framework that encompasses much of previous work. Then, we present a overview of the diverse applications of LLM-based autonomous agents in social science, natural science, and engineering. Finally, we delve into the evaluation strategies commonly used for LLM-based autonomous agents. Based on the previous studies, we also present several challenges and future directions in this field.
doi_str_mv 10.1007/s11704-024-40231-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2973435245</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2973345433</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-e37ebcc2862e8794ada43893828ab29c419495619db51200c58f20b73424b0b83</originalsourceid><addsrcrecordid>eNqFkE9LAzEQxYMoWGq_gKcFz9HJTNJNjqX4Dwpe9ByS3bRY2k1NdoV-e6MretPLzIP5vTfwGLsUcC0A6pssRA2SA0ouAUlwccImCEZxRJqf_mjU52yW8xYAEFApxAnTiyoP6T0cq9hVO5c2ocxuM7gi9rENu8q7HNrKDX3s4j4OuSqnrs8X7GztdjnMvveUvdzdPi8f-Orp_nG5WPGGjOh5oDr4pkE9x6BrI13rJGlDGrXzaBopjDRqLkzrlUCARuk1gq9JovTgNU3Z1Zh7SPFtCLm32zikrry0aApGCqX6jyKpJFGhcKSaFHNOYW0P6XXv0tEKsJ9V2rFKW6q0X1VaUUw0mnKBu01Iv9F_uD4ARjNzCQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2973345433</pqid></control><display><type>article</type><title>A survey on large language model based autonomous agents</title><source>Springer Nature - Complete Springer Journals</source><creator>Wang, Lei ; Ma, Chen ; Feng, Xueyang ; Zhang, Zeyu ; Yang, Hao ; Zhang, Jingsen ; Chen, Zhiyuan ; Tang, Jiakai ; Chen, Xu ; Lin, Yankai ; Zhao, Wayne Xin ; Wei, Zhewei ; Wen, Jirong</creator><creatorcontrib>Wang, Lei ; Ma, Chen ; Feng, Xueyang ; Zhang, Zeyu ; Yang, Hao ; Zhang, Jingsen ; Chen, Zhiyuan ; Tang, Jiakai ; Chen, Xu ; Lin, Yankai ; Zhao, Wayne Xin ; Wei, Zhewei ; Wen, Jirong</creatorcontrib><description>Autonomous agents have long been a research focus in academic and industry communities. Previous research often focuses on training agents with limited knowledge within isolated environments, which diverges significantly from human learning processes, and makes the agents hard to achieve human-like decisions. Recently, through the acquisition of vast amounts of Web knowledge, large language models (LLMs) have shown potential in human-level intelligence, leading to a surge in research on LLM-based autonomous agents. In this paper, we present a comprehensive survey of these studies, delivering a systematic review of LLM-based autonomous agents from a holistic perspective. We first discuss the construction of LLM-based autonomous agents, proposing a unified framework that encompasses much of previous work. Then, we present a overview of the diverse applications of LLM-based autonomous agents in social science, natural science, and engineering. Finally, we delve into the evaluation strategies commonly used for LLM-based autonomous agents. Based on the previous studies, we also present several challenges and future directions in this field.</description><identifier>ISSN: 2095-2228</identifier><identifier>EISSN: 2095-2236</identifier><identifier>DOI: 10.1007/s11704-024-40231-1</identifier><language>eng</language><publisher>Beijing: Higher Education Press</publisher><subject>Artificial intelligence ; Computer Science ; Construction ; Design ; Language ; Large language models ; Review Article ; Social sciences ; Systematic review</subject><ispartof>Frontiers of Computer Science, 2024-12, Vol.18 (6), p.186345, Article 186345</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-e37ebcc2862e8794ada43893828ab29c419495619db51200c58f20b73424b0b83</citedby><cites>FETCH-LOGICAL-c391t-e37ebcc2862e8794ada43893828ab29c419495619db51200c58f20b73424b0b83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11704-024-40231-1$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11704-024-40231-1$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Ma, Chen</creatorcontrib><creatorcontrib>Feng, Xueyang</creatorcontrib><creatorcontrib>Zhang, Zeyu</creatorcontrib><creatorcontrib>Yang, Hao</creatorcontrib><creatorcontrib>Zhang, Jingsen</creatorcontrib><creatorcontrib>Chen, Zhiyuan</creatorcontrib><creatorcontrib>Tang, Jiakai</creatorcontrib><creatorcontrib>Chen, Xu</creatorcontrib><creatorcontrib>Lin, Yankai</creatorcontrib><creatorcontrib>Zhao, Wayne Xin</creatorcontrib><creatorcontrib>Wei, Zhewei</creatorcontrib><creatorcontrib>Wen, Jirong</creatorcontrib><title>A survey on large language model based autonomous agents</title><title>Frontiers of Computer Science</title><addtitle>Front. Comput. Sci</addtitle><description>Autonomous agents have long been a research focus in academic and industry communities. Previous research often focuses on training agents with limited knowledge within isolated environments, which diverges significantly from human learning processes, and makes the agents hard to achieve human-like decisions. Recently, through the acquisition of vast amounts of Web knowledge, large language models (LLMs) have shown potential in human-level intelligence, leading to a surge in research on LLM-based autonomous agents. In this paper, we present a comprehensive survey of these studies, delivering a systematic review of LLM-based autonomous agents from a holistic perspective. We first discuss the construction of LLM-based autonomous agents, proposing a unified framework that encompasses much of previous work. Then, we present a overview of the diverse applications of LLM-based autonomous agents in social science, natural science, and engineering. Finally, we delve into the evaluation strategies commonly used for LLM-based autonomous agents. Based on the previous studies, we also present several challenges and future directions in this field.</description><subject>Artificial intelligence</subject><subject>Computer Science</subject><subject>Construction</subject><subject>Design</subject><subject>Language</subject><subject>Large language models</subject><subject>Review Article</subject><subject>Social sciences</subject><subject>Systematic review</subject><issn>2095-2228</issn><issn>2095-2236</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNqFkE9LAzEQxYMoWGq_gKcFz9HJTNJNjqX4Dwpe9ByS3bRY2k1NdoV-e6MretPLzIP5vTfwGLsUcC0A6pssRA2SA0ouAUlwccImCEZxRJqf_mjU52yW8xYAEFApxAnTiyoP6T0cq9hVO5c2ocxuM7gi9rENu8q7HNrKDX3s4j4OuSqnrs8X7GztdjnMvveUvdzdPi8f-Orp_nG5WPGGjOh5oDr4pkE9x6BrI13rJGlDGrXzaBopjDRqLkzrlUCARuk1gq9JovTgNU3Z1Zh7SPFtCLm32zikrry0aApGCqX6jyKpJFGhcKSaFHNOYW0P6XXv0tEKsJ9V2rFKW6q0X1VaUUw0mnKBu01Iv9F_uD4ARjNzCQ</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Wang, Lei</creator><creator>Ma, Chen</creator><creator>Feng, Xueyang</creator><creator>Zhang, Zeyu</creator><creator>Yang, Hao</creator><creator>Zhang, Jingsen</creator><creator>Chen, Zhiyuan</creator><creator>Tang, Jiakai</creator><creator>Chen, Xu</creator><creator>Lin, Yankai</creator><creator>Zhao, Wayne Xin</creator><creator>Wei, Zhewei</creator><creator>Wen, Jirong</creator><general>Higher Education Press</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20241201</creationdate><title>A survey on large language model based autonomous agents</title><author>Wang, Lei ; Ma, Chen ; Feng, Xueyang ; Zhang, Zeyu ; Yang, Hao ; Zhang, Jingsen ; Chen, Zhiyuan ; Tang, Jiakai ; Chen, Xu ; Lin, Yankai ; Zhao, Wayne Xin ; Wei, Zhewei ; Wen, Jirong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-e37ebcc2862e8794ada43893828ab29c419495619db51200c58f20b73424b0b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial intelligence</topic><topic>Computer Science</topic><topic>Construction</topic><topic>Design</topic><topic>Language</topic><topic>Large language models</topic><topic>Review Article</topic><topic>Social sciences</topic><topic>Systematic review</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Ma, Chen</creatorcontrib><creatorcontrib>Feng, Xueyang</creatorcontrib><creatorcontrib>Zhang, Zeyu</creatorcontrib><creatorcontrib>Yang, Hao</creatorcontrib><creatorcontrib>Zhang, Jingsen</creatorcontrib><creatorcontrib>Chen, Zhiyuan</creatorcontrib><creatorcontrib>Tang, Jiakai</creatorcontrib><creatorcontrib>Chen, Xu</creatorcontrib><creatorcontrib>Lin, Yankai</creatorcontrib><creatorcontrib>Zhao, Wayne Xin</creatorcontrib><creatorcontrib>Wei, Zhewei</creatorcontrib><creatorcontrib>Wen, Jirong</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Frontiers of Computer Science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Lei</au><au>Ma, Chen</au><au>Feng, Xueyang</au><au>Zhang, Zeyu</au><au>Yang, Hao</au><au>Zhang, Jingsen</au><au>Chen, Zhiyuan</au><au>Tang, Jiakai</au><au>Chen, Xu</au><au>Lin, Yankai</au><au>Zhao, Wayne Xin</au><au>Wei, Zhewei</au><au>Wen, Jirong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A survey on large language model based autonomous agents</atitle><jtitle>Frontiers of Computer Science</jtitle><stitle>Front. Comput. Sci</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>18</volume><issue>6</issue><spage>186345</spage><pages>186345-</pages><artnum>186345</artnum><issn>2095-2228</issn><eissn>2095-2236</eissn><abstract>Autonomous agents have long been a research focus in academic and industry communities. Previous research often focuses on training agents with limited knowledge within isolated environments, which diverges significantly from human learning processes, and makes the agents hard to achieve human-like decisions. Recently, through the acquisition of vast amounts of Web knowledge, large language models (LLMs) have shown potential in human-level intelligence, leading to a surge in research on LLM-based autonomous agents. In this paper, we present a comprehensive survey of these studies, delivering a systematic review of LLM-based autonomous agents from a holistic perspective. We first discuss the construction of LLM-based autonomous agents, proposing a unified framework that encompasses much of previous work. Then, we present a overview of the diverse applications of LLM-based autonomous agents in social science, natural science, and engineering. Finally, we delve into the evaluation strategies commonly used for LLM-based autonomous agents. Based on the previous studies, we also present several challenges and future directions in this field.</abstract><cop>Beijing</cop><pub>Higher Education Press</pub><doi>10.1007/s11704-024-40231-1</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2095-2228
ispartof Frontiers of Computer Science, 2024-12, Vol.18 (6), p.186345, Article 186345
issn 2095-2228
2095-2236
language eng
recordid cdi_proquest_journals_2973435245
source Springer Nature - Complete Springer Journals
subjects Artificial intelligence
Computer Science
Construction
Design
Language
Large language models
Review Article
Social sciences
Systematic review
title A survey on large language model based autonomous agents
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T07%3A50%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20survey%20on%20large%20language%20model%20based%20autonomous%20agents&rft.jtitle=Frontiers%20of%20Computer%20Science&rft.au=Wang,%20Lei&rft.date=2024-12-01&rft.volume=18&rft.issue=6&rft.spage=186345&rft.pages=186345-&rft.artnum=186345&rft.issn=2095-2228&rft.eissn=2095-2236&rft_id=info:doi/10.1007/s11704-024-40231-1&rft_dat=%3Cproquest_cross%3E2973345433%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2973345433&rft_id=info:pmid/&rfr_iscdi=true