A survey on large language model based autonomous agents
Autonomous agents have long been a research focus in academic and industry communities. Previous research often focuses on training agents with limited knowledge within isolated environments, which diverges significantly from human learning processes, and makes the agents hard to achieve human-like...
Gespeichert in:
Veröffentlicht in: | Frontiers of Computer Science 2024-12, Vol.18 (6), p.186345, Article 186345 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | 186345 |
container_title | Frontiers of Computer Science |
container_volume | 18 |
creator | Wang, Lei Ma, Chen Feng, Xueyang Zhang, Zeyu Yang, Hao Zhang, Jingsen Chen, Zhiyuan Tang, Jiakai Chen, Xu Lin, Yankai Zhao, Wayne Xin Wei, Zhewei Wen, Jirong |
description | Autonomous agents have long been a research focus in academic and industry communities. Previous research often focuses on training agents with limited knowledge within isolated environments, which diverges significantly from human learning processes, and makes the agents hard to achieve human-like decisions. Recently, through the acquisition of vast amounts of Web knowledge, large language models (LLMs) have shown potential in human-level intelligence, leading to a surge in research on LLM-based autonomous agents. In this paper, we present a comprehensive survey of these studies, delivering a systematic review of LLM-based autonomous agents from a holistic perspective. We first discuss the construction of LLM-based autonomous agents, proposing a unified framework that encompasses much of previous work. Then, we present a overview of the diverse applications of LLM-based autonomous agents in social science, natural science, and engineering. Finally, we delve into the evaluation strategies commonly used for LLM-based autonomous agents. Based on the previous studies, we also present several challenges and future directions in this field. |
doi_str_mv | 10.1007/s11704-024-40231-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2973435245</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2973345433</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-e37ebcc2862e8794ada43893828ab29c419495619db51200c58f20b73424b0b83</originalsourceid><addsrcrecordid>eNqFkE9LAzEQxYMoWGq_gKcFz9HJTNJNjqX4Dwpe9ByS3bRY2k1NdoV-e6MretPLzIP5vTfwGLsUcC0A6pssRA2SA0ouAUlwccImCEZxRJqf_mjU52yW8xYAEFApxAnTiyoP6T0cq9hVO5c2ocxuM7gi9rENu8q7HNrKDX3s4j4OuSqnrs8X7GztdjnMvveUvdzdPi8f-Orp_nG5WPGGjOh5oDr4pkE9x6BrI13rJGlDGrXzaBopjDRqLkzrlUCARuk1gq9JovTgNU3Z1Zh7SPFtCLm32zikrry0aApGCqX6jyKpJFGhcKSaFHNOYW0P6XXv0tEKsJ9V2rFKW6q0X1VaUUw0mnKBu01Iv9F_uD4ARjNzCQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2973345433</pqid></control><display><type>article</type><title>A survey on large language model based autonomous agents</title><source>Springer Nature - Complete Springer Journals</source><creator>Wang, Lei ; Ma, Chen ; Feng, Xueyang ; Zhang, Zeyu ; Yang, Hao ; Zhang, Jingsen ; Chen, Zhiyuan ; Tang, Jiakai ; Chen, Xu ; Lin, Yankai ; Zhao, Wayne Xin ; Wei, Zhewei ; Wen, Jirong</creator><creatorcontrib>Wang, Lei ; Ma, Chen ; Feng, Xueyang ; Zhang, Zeyu ; Yang, Hao ; Zhang, Jingsen ; Chen, Zhiyuan ; Tang, Jiakai ; Chen, Xu ; Lin, Yankai ; Zhao, Wayne Xin ; Wei, Zhewei ; Wen, Jirong</creatorcontrib><description>Autonomous agents have long been a research focus in academic and industry communities. Previous research often focuses on training agents with limited knowledge within isolated environments, which diverges significantly from human learning processes, and makes the agents hard to achieve human-like decisions. Recently, through the acquisition of vast amounts of Web knowledge, large language models (LLMs) have shown potential in human-level intelligence, leading to a surge in research on LLM-based autonomous agents. In this paper, we present a comprehensive survey of these studies, delivering a systematic review of LLM-based autonomous agents from a holistic perspective. We first discuss the construction of LLM-based autonomous agents, proposing a unified framework that encompasses much of previous work. Then, we present a overview of the diverse applications of LLM-based autonomous agents in social science, natural science, and engineering. Finally, we delve into the evaluation strategies commonly used for LLM-based autonomous agents. Based on the previous studies, we also present several challenges and future directions in this field.</description><identifier>ISSN: 2095-2228</identifier><identifier>EISSN: 2095-2236</identifier><identifier>DOI: 10.1007/s11704-024-40231-1</identifier><language>eng</language><publisher>Beijing: Higher Education Press</publisher><subject>Artificial intelligence ; Computer Science ; Construction ; Design ; Language ; Large language models ; Review Article ; Social sciences ; Systematic review</subject><ispartof>Frontiers of Computer Science, 2024-12, Vol.18 (6), p.186345, Article 186345</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-e37ebcc2862e8794ada43893828ab29c419495619db51200c58f20b73424b0b83</citedby><cites>FETCH-LOGICAL-c391t-e37ebcc2862e8794ada43893828ab29c419495619db51200c58f20b73424b0b83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11704-024-40231-1$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11704-024-40231-1$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Ma, Chen</creatorcontrib><creatorcontrib>Feng, Xueyang</creatorcontrib><creatorcontrib>Zhang, Zeyu</creatorcontrib><creatorcontrib>Yang, Hao</creatorcontrib><creatorcontrib>Zhang, Jingsen</creatorcontrib><creatorcontrib>Chen, Zhiyuan</creatorcontrib><creatorcontrib>Tang, Jiakai</creatorcontrib><creatorcontrib>Chen, Xu</creatorcontrib><creatorcontrib>Lin, Yankai</creatorcontrib><creatorcontrib>Zhao, Wayne Xin</creatorcontrib><creatorcontrib>Wei, Zhewei</creatorcontrib><creatorcontrib>Wen, Jirong</creatorcontrib><title>A survey on large language model based autonomous agents</title><title>Frontiers of Computer Science</title><addtitle>Front. Comput. Sci</addtitle><description>Autonomous agents have long been a research focus in academic and industry communities. Previous research often focuses on training agents with limited knowledge within isolated environments, which diverges significantly from human learning processes, and makes the agents hard to achieve human-like decisions. Recently, through the acquisition of vast amounts of Web knowledge, large language models (LLMs) have shown potential in human-level intelligence, leading to a surge in research on LLM-based autonomous agents. In this paper, we present a comprehensive survey of these studies, delivering a systematic review of LLM-based autonomous agents from a holistic perspective. We first discuss the construction of LLM-based autonomous agents, proposing a unified framework that encompasses much of previous work. Then, we present a overview of the diverse applications of LLM-based autonomous agents in social science, natural science, and engineering. Finally, we delve into the evaluation strategies commonly used for LLM-based autonomous agents. Based on the previous studies, we also present several challenges and future directions in this field.</description><subject>Artificial intelligence</subject><subject>Computer Science</subject><subject>Construction</subject><subject>Design</subject><subject>Language</subject><subject>Large language models</subject><subject>Review Article</subject><subject>Social sciences</subject><subject>Systematic review</subject><issn>2095-2228</issn><issn>2095-2236</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNqFkE9LAzEQxYMoWGq_gKcFz9HJTNJNjqX4Dwpe9ByS3bRY2k1NdoV-e6MretPLzIP5vTfwGLsUcC0A6pssRA2SA0ouAUlwccImCEZxRJqf_mjU52yW8xYAEFApxAnTiyoP6T0cq9hVO5c2ocxuM7gi9rENu8q7HNrKDX3s4j4OuSqnrs8X7GztdjnMvveUvdzdPi8f-Orp_nG5WPGGjOh5oDr4pkE9x6BrI13rJGlDGrXzaBopjDRqLkzrlUCARuk1gq9JovTgNU3Z1Zh7SPFtCLm32zikrry0aApGCqX6jyKpJFGhcKSaFHNOYW0P6XXv0tEKsJ9V2rFKW6q0X1VaUUw0mnKBu01Iv9F_uD4ARjNzCQ</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Wang, Lei</creator><creator>Ma, Chen</creator><creator>Feng, Xueyang</creator><creator>Zhang, Zeyu</creator><creator>Yang, Hao</creator><creator>Zhang, Jingsen</creator><creator>Chen, Zhiyuan</creator><creator>Tang, Jiakai</creator><creator>Chen, Xu</creator><creator>Lin, Yankai</creator><creator>Zhao, Wayne Xin</creator><creator>Wei, Zhewei</creator><creator>Wen, Jirong</creator><general>Higher Education Press</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20241201</creationdate><title>A survey on large language model based autonomous agents</title><author>Wang, Lei ; Ma, Chen ; Feng, Xueyang ; Zhang, Zeyu ; Yang, Hao ; Zhang, Jingsen ; Chen, Zhiyuan ; Tang, Jiakai ; Chen, Xu ; Lin, Yankai ; Zhao, Wayne Xin ; Wei, Zhewei ; Wen, Jirong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-e37ebcc2862e8794ada43893828ab29c419495619db51200c58f20b73424b0b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial intelligence</topic><topic>Computer Science</topic><topic>Construction</topic><topic>Design</topic><topic>Language</topic><topic>Large language models</topic><topic>Review Article</topic><topic>Social sciences</topic><topic>Systematic review</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Ma, Chen</creatorcontrib><creatorcontrib>Feng, Xueyang</creatorcontrib><creatorcontrib>Zhang, Zeyu</creatorcontrib><creatorcontrib>Yang, Hao</creatorcontrib><creatorcontrib>Zhang, Jingsen</creatorcontrib><creatorcontrib>Chen, Zhiyuan</creatorcontrib><creatorcontrib>Tang, Jiakai</creatorcontrib><creatorcontrib>Chen, Xu</creatorcontrib><creatorcontrib>Lin, Yankai</creatorcontrib><creatorcontrib>Zhao, Wayne Xin</creatorcontrib><creatorcontrib>Wei, Zhewei</creatorcontrib><creatorcontrib>Wen, Jirong</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Frontiers of Computer Science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Lei</au><au>Ma, Chen</au><au>Feng, Xueyang</au><au>Zhang, Zeyu</au><au>Yang, Hao</au><au>Zhang, Jingsen</au><au>Chen, Zhiyuan</au><au>Tang, Jiakai</au><au>Chen, Xu</au><au>Lin, Yankai</au><au>Zhao, Wayne Xin</au><au>Wei, Zhewei</au><au>Wen, Jirong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A survey on large language model based autonomous agents</atitle><jtitle>Frontiers of Computer Science</jtitle><stitle>Front. Comput. Sci</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>18</volume><issue>6</issue><spage>186345</spage><pages>186345-</pages><artnum>186345</artnum><issn>2095-2228</issn><eissn>2095-2236</eissn><abstract>Autonomous agents have long been a research focus in academic and industry communities. Previous research often focuses on training agents with limited knowledge within isolated environments, which diverges significantly from human learning processes, and makes the agents hard to achieve human-like decisions. Recently, through the acquisition of vast amounts of Web knowledge, large language models (LLMs) have shown potential in human-level intelligence, leading to a surge in research on LLM-based autonomous agents. In this paper, we present a comprehensive survey of these studies, delivering a systematic review of LLM-based autonomous agents from a holistic perspective. We first discuss the construction of LLM-based autonomous agents, proposing a unified framework that encompasses much of previous work. Then, we present a overview of the diverse applications of LLM-based autonomous agents in social science, natural science, and engineering. Finally, we delve into the evaluation strategies commonly used for LLM-based autonomous agents. Based on the previous studies, we also present several challenges and future directions in this field.</abstract><cop>Beijing</cop><pub>Higher Education Press</pub><doi>10.1007/s11704-024-40231-1</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2095-2228 |
ispartof | Frontiers of Computer Science, 2024-12, Vol.18 (6), p.186345, Article 186345 |
issn | 2095-2228 2095-2236 |
language | eng |
recordid | cdi_proquest_journals_2973435245 |
source | Springer Nature - Complete Springer Journals |
subjects | Artificial intelligence Computer Science Construction Design Language Large language models Review Article Social sciences Systematic review |
title | A survey on large language model based autonomous agents |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T07%3A50%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20survey%20on%20large%20language%20model%20based%20autonomous%20agents&rft.jtitle=Frontiers%20of%20Computer%20Science&rft.au=Wang,%20Lei&rft.date=2024-12-01&rft.volume=18&rft.issue=6&rft.spage=186345&rft.pages=186345-&rft.artnum=186345&rft.issn=2095-2228&rft.eissn=2095-2236&rft_id=info:doi/10.1007/s11704-024-40231-1&rft_dat=%3Cproquest_cross%3E2973345433%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2973345433&rft_id=info:pmid/&rfr_iscdi=true |