Toward the reliable prediction of reservoir landslide displacement using earthworm optimization algorithm-optimized support vector regression (EOA-SVR)
Reliable prediction of reservoir displacement is essential for practical applications. Machine learning offers an attractive and accessible set of tools for the displacement prediction of reservoir landslides. In the present study, earthworm optimization algorithm-optimized support vector regression...
Gespeichert in:
Veröffentlicht in: | Natural hazards (Dordrecht) 2024-03, Vol.120 (4), p.3165-3188 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3188 |
---|---|
container_issue | 4 |
container_start_page | 3165 |
container_title | Natural hazards (Dordrecht) |
container_volume | 120 |
creator | Liu, Zhiyang Ma, Junwei Xia, Ding Jiang, Sheng Ren, Zhiyuan Tan, Chunhai Lei, Dongze Guo, Haixiang |
description | Reliable prediction of reservoir displacement is essential for practical applications. Machine learning offers an attractive and accessible set of tools for the displacement prediction of reservoir landslides. In the present study, earthworm optimization algorithm-optimized support vector regression (EOA-SVR) was proposed for the reliable prediction of reservoir landslide displacement. The proposed approach was evaluated and compared with metaheuristics, including artificial bee colony (ABC), biogeography-based optimization (BBO), genetic algorithm (GA), gray wolf optimization (GWO), particle swarm optimization (PSO), and water cycle algorithm (WCA), by the Friedman and post hoc Nemenyi tests. The results from the Baishuihe landslide showed that the EOA-optimized SVR provided satisfactory performance with a Kling–Gupta efficiency (KGE) greater than 0.98 and nearly optimal values of the coefficient of determination. Significant performance differences were revealed between the compared metaheuristics. The EOA is superior with respect to both performance and stability. The hyperparameter sensitivity analysis demonstrated that the EOA can stably provide reliable predictions by maintaining the optimal solution. The experimental results from the Baishuihe landslide indicate that the EOA-optimized SVR is promising for accurate and reliable prediction of reservoir landslide displacements, thus aiding in medium- and long-term landslide early warning. |
doi_str_mv | 10.1007/s11069-023-06322-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2973348875</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2973348875</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-194d000771f925a36e3f777f004ac7198875f94755eb6a7c787c3deeb47997003</originalsourceid><addsrcrecordid>eNp9kc1q3DAQx0VJoNtNX6AnQS_tQc3Isq3VMYSkKQQW0iTkJrT2eFfBttyRdkP7InndaLOB3nIaZvh_wPwY-yLhhwTQp1FKqI2AQgmoVVEI-YHNZKXzuijhiM3AFFKAgoeP7FOMjwBS1oWZsefb8OSo5WmDnLD3btUjnwhb3yQfRh66fI5Iu-CJ925sY-9b5K2PU-8aHHBMfBv9uOboKG2eAg08TMkP_p97DXD9OpBPm0G8nbHlcTtNgRLfYZMC5YJ17oh79beL5Zn4fX_z_YQdd66P-Pltztnd5cXt-ZW4Xv78dX52LRolTRLSlC3kB2jZmaJyqkbVaa07gNI1WprFQledKXVV4ap2utEL3agWcVVqYzSAmrOvh9yJwp8txmQfw5bGXGkLo5Uq9wlZVRxUDYUYCTs7kR8c_bUS7B6APQCwGYB9BWBlNqmDKWbxuEb6H_2O6wWcxYvT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2973348875</pqid></control><display><type>article</type><title>Toward the reliable prediction of reservoir landslide displacement using earthworm optimization algorithm-optimized support vector regression (EOA-SVR)</title><source>SpringerLink Journals</source><creator>Liu, Zhiyang ; Ma, Junwei ; Xia, Ding ; Jiang, Sheng ; Ren, Zhiyuan ; Tan, Chunhai ; Lei, Dongze ; Guo, Haixiang</creator><creatorcontrib>Liu, Zhiyang ; Ma, Junwei ; Xia, Ding ; Jiang, Sheng ; Ren, Zhiyuan ; Tan, Chunhai ; Lei, Dongze ; Guo, Haixiang</creatorcontrib><description>Reliable prediction of reservoir displacement is essential for practical applications. Machine learning offers an attractive and accessible set of tools for the displacement prediction of reservoir landslides. In the present study, earthworm optimization algorithm-optimized support vector regression (EOA-SVR) was proposed for the reliable prediction of reservoir landslide displacement. The proposed approach was evaluated and compared with metaheuristics, including artificial bee colony (ABC), biogeography-based optimization (BBO), genetic algorithm (GA), gray wolf optimization (GWO), particle swarm optimization (PSO), and water cycle algorithm (WCA), by the Friedman and post hoc Nemenyi tests. The results from the Baishuihe landslide showed that the EOA-optimized SVR provided satisfactory performance with a Kling–Gupta efficiency (KGE) greater than 0.98 and nearly optimal values of the coefficient of determination. Significant performance differences were revealed between the compared metaheuristics. The EOA is superior with respect to both performance and stability. The hyperparameter sensitivity analysis demonstrated that the EOA can stably provide reliable predictions by maintaining the optimal solution. The experimental results from the Baishuihe landslide indicate that the EOA-optimized SVR is promising for accurate and reliable prediction of reservoir landslide displacements, thus aiding in medium- and long-term landslide early warning.</description><identifier>ISSN: 0921-030X</identifier><identifier>EISSN: 1573-0840</identifier><identifier>DOI: 10.1007/s11069-023-06322-1</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algorithms ; Biogeography ; Civil Engineering ; Earth and Environmental Science ; Earth Sciences ; Environmental Management ; Genetic algorithms ; Geophysics/Geodesy ; Geotechnical Engineering & Applied Earth Sciences ; Heuristic methods ; Hydrogeology ; Hydrologic cycle ; Hydrological cycle ; Landslide warnings ; Landslides ; Landslides & mudslides ; Machine learning ; Natural Hazards ; Optimization algorithms ; Original Paper ; Particle swarm optimization ; Predictions ; Reservoirs ; Sensitivity analysis ; Stability analysis ; Support vector machines ; Swarm intelligence ; Worms</subject><ispartof>Natural hazards (Dordrecht), 2024-03, Vol.120 (4), p.3165-3188</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-194d000771f925a36e3f777f004ac7198875f94755eb6a7c787c3deeb47997003</citedby><cites>FETCH-LOGICAL-c319t-194d000771f925a36e3f777f004ac7198875f94755eb6a7c787c3deeb47997003</cites><orcidid>0000-0001-8408-2821</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11069-023-06322-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11069-023-06322-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Liu, Zhiyang</creatorcontrib><creatorcontrib>Ma, Junwei</creatorcontrib><creatorcontrib>Xia, Ding</creatorcontrib><creatorcontrib>Jiang, Sheng</creatorcontrib><creatorcontrib>Ren, Zhiyuan</creatorcontrib><creatorcontrib>Tan, Chunhai</creatorcontrib><creatorcontrib>Lei, Dongze</creatorcontrib><creatorcontrib>Guo, Haixiang</creatorcontrib><title>Toward the reliable prediction of reservoir landslide displacement using earthworm optimization algorithm-optimized support vector regression (EOA-SVR)</title><title>Natural hazards (Dordrecht)</title><addtitle>Nat Hazards</addtitle><description>Reliable prediction of reservoir displacement is essential for practical applications. Machine learning offers an attractive and accessible set of tools for the displacement prediction of reservoir landslides. In the present study, earthworm optimization algorithm-optimized support vector regression (EOA-SVR) was proposed for the reliable prediction of reservoir landslide displacement. The proposed approach was evaluated and compared with metaheuristics, including artificial bee colony (ABC), biogeography-based optimization (BBO), genetic algorithm (GA), gray wolf optimization (GWO), particle swarm optimization (PSO), and water cycle algorithm (WCA), by the Friedman and post hoc Nemenyi tests. The results from the Baishuihe landslide showed that the EOA-optimized SVR provided satisfactory performance with a Kling–Gupta efficiency (KGE) greater than 0.98 and nearly optimal values of the coefficient of determination. Significant performance differences were revealed between the compared metaheuristics. The EOA is superior with respect to both performance and stability. The hyperparameter sensitivity analysis demonstrated that the EOA can stably provide reliable predictions by maintaining the optimal solution. The experimental results from the Baishuihe landslide indicate that the EOA-optimized SVR is promising for accurate and reliable prediction of reservoir landslide displacements, thus aiding in medium- and long-term landslide early warning.</description><subject>Algorithms</subject><subject>Biogeography</subject><subject>Civil Engineering</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Environmental Management</subject><subject>Genetic algorithms</subject><subject>Geophysics/Geodesy</subject><subject>Geotechnical Engineering & Applied Earth Sciences</subject><subject>Heuristic methods</subject><subject>Hydrogeology</subject><subject>Hydrologic cycle</subject><subject>Hydrological cycle</subject><subject>Landslide warnings</subject><subject>Landslides</subject><subject>Landslides & mudslides</subject><subject>Machine learning</subject><subject>Natural Hazards</subject><subject>Optimization algorithms</subject><subject>Original Paper</subject><subject>Particle swarm optimization</subject><subject>Predictions</subject><subject>Reservoirs</subject><subject>Sensitivity analysis</subject><subject>Stability analysis</subject><subject>Support vector machines</subject><subject>Swarm intelligence</subject><subject>Worms</subject><issn>0921-030X</issn><issn>1573-0840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kc1q3DAQx0VJoNtNX6AnQS_tQc3Isq3VMYSkKQQW0iTkJrT2eFfBttyRdkP7InndaLOB3nIaZvh_wPwY-yLhhwTQp1FKqI2AQgmoVVEI-YHNZKXzuijhiM3AFFKAgoeP7FOMjwBS1oWZsefb8OSo5WmDnLD3btUjnwhb3yQfRh66fI5Iu-CJ925sY-9b5K2PU-8aHHBMfBv9uOboKG2eAg08TMkP_p97DXD9OpBPm0G8nbHlcTtNgRLfYZMC5YJ17oh79beL5Zn4fX_z_YQdd66P-Pltztnd5cXt-ZW4Xv78dX52LRolTRLSlC3kB2jZmaJyqkbVaa07gNI1WprFQledKXVV4ap2utEL3agWcVVqYzSAmrOvh9yJwp8txmQfw5bGXGkLo5Uq9wlZVRxUDYUYCTs7kR8c_bUS7B6APQCwGYB9BWBlNqmDKWbxuEb6H_2O6wWcxYvT</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Liu, Zhiyang</creator><creator>Ma, Junwei</creator><creator>Xia, Ding</creator><creator>Jiang, Sheng</creator><creator>Ren, Zhiyuan</creator><creator>Tan, Chunhai</creator><creator>Lei, Dongze</creator><creator>Guo, Haixiang</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-8408-2821</orcidid></search><sort><creationdate>20240301</creationdate><title>Toward the reliable prediction of reservoir landslide displacement using earthworm optimization algorithm-optimized support vector regression (EOA-SVR)</title><author>Liu, Zhiyang ; Ma, Junwei ; Xia, Ding ; Jiang, Sheng ; Ren, Zhiyuan ; Tan, Chunhai ; Lei, Dongze ; Guo, Haixiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-194d000771f925a36e3f777f004ac7198875f94755eb6a7c787c3deeb47997003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Biogeography</topic><topic>Civil Engineering</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Environmental Management</topic><topic>Genetic algorithms</topic><topic>Geophysics/Geodesy</topic><topic>Geotechnical Engineering & Applied Earth Sciences</topic><topic>Heuristic methods</topic><topic>Hydrogeology</topic><topic>Hydrologic cycle</topic><topic>Hydrological cycle</topic><topic>Landslide warnings</topic><topic>Landslides</topic><topic>Landslides & mudslides</topic><topic>Machine learning</topic><topic>Natural Hazards</topic><topic>Optimization algorithms</topic><topic>Original Paper</topic><topic>Particle swarm optimization</topic><topic>Predictions</topic><topic>Reservoirs</topic><topic>Sensitivity analysis</topic><topic>Stability analysis</topic><topic>Support vector machines</topic><topic>Swarm intelligence</topic><topic>Worms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Zhiyang</creatorcontrib><creatorcontrib>Ma, Junwei</creatorcontrib><creatorcontrib>Xia, Ding</creatorcontrib><creatorcontrib>Jiang, Sheng</creatorcontrib><creatorcontrib>Ren, Zhiyuan</creatorcontrib><creatorcontrib>Tan, Chunhai</creatorcontrib><creatorcontrib>Lei, Dongze</creatorcontrib><creatorcontrib>Guo, Haixiang</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Natural hazards (Dordrecht)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Zhiyang</au><au>Ma, Junwei</au><au>Xia, Ding</au><au>Jiang, Sheng</au><au>Ren, Zhiyuan</au><au>Tan, Chunhai</au><au>Lei, Dongze</au><au>Guo, Haixiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward the reliable prediction of reservoir landslide displacement using earthworm optimization algorithm-optimized support vector regression (EOA-SVR)</atitle><jtitle>Natural hazards (Dordrecht)</jtitle><stitle>Nat Hazards</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>120</volume><issue>4</issue><spage>3165</spage><epage>3188</epage><pages>3165-3188</pages><issn>0921-030X</issn><eissn>1573-0840</eissn><abstract>Reliable prediction of reservoir displacement is essential for practical applications. Machine learning offers an attractive and accessible set of tools for the displacement prediction of reservoir landslides. In the present study, earthworm optimization algorithm-optimized support vector regression (EOA-SVR) was proposed for the reliable prediction of reservoir landslide displacement. The proposed approach was evaluated and compared with metaheuristics, including artificial bee colony (ABC), biogeography-based optimization (BBO), genetic algorithm (GA), gray wolf optimization (GWO), particle swarm optimization (PSO), and water cycle algorithm (WCA), by the Friedman and post hoc Nemenyi tests. The results from the Baishuihe landslide showed that the EOA-optimized SVR provided satisfactory performance with a Kling–Gupta efficiency (KGE) greater than 0.98 and nearly optimal values of the coefficient of determination. Significant performance differences were revealed between the compared metaheuristics. The EOA is superior with respect to both performance and stability. The hyperparameter sensitivity analysis demonstrated that the EOA can stably provide reliable predictions by maintaining the optimal solution. The experimental results from the Baishuihe landslide indicate that the EOA-optimized SVR is promising for accurate and reliable prediction of reservoir landslide displacements, thus aiding in medium- and long-term landslide early warning.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11069-023-06322-1</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0001-8408-2821</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-030X |
ispartof | Natural hazards (Dordrecht), 2024-03, Vol.120 (4), p.3165-3188 |
issn | 0921-030X 1573-0840 |
language | eng |
recordid | cdi_proquest_journals_2973348875 |
source | SpringerLink Journals |
subjects | Algorithms Biogeography Civil Engineering Earth and Environmental Science Earth Sciences Environmental Management Genetic algorithms Geophysics/Geodesy Geotechnical Engineering & Applied Earth Sciences Heuristic methods Hydrogeology Hydrologic cycle Hydrological cycle Landslide warnings Landslides Landslides & mudslides Machine learning Natural Hazards Optimization algorithms Original Paper Particle swarm optimization Predictions Reservoirs Sensitivity analysis Stability analysis Support vector machines Swarm intelligence Worms |
title | Toward the reliable prediction of reservoir landslide displacement using earthworm optimization algorithm-optimized support vector regression (EOA-SVR) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T11%3A03%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20the%20reliable%20prediction%20of%20reservoir%20landslide%20displacement%20using%20earthworm%20optimization%20algorithm-optimized%20support%20vector%20regression%20(EOA-SVR)&rft.jtitle=Natural%20hazards%20(Dordrecht)&rft.au=Liu,%20Zhiyang&rft.date=2024-03-01&rft.volume=120&rft.issue=4&rft.spage=3165&rft.epage=3188&rft.pages=3165-3188&rft.issn=0921-030X&rft.eissn=1573-0840&rft_id=info:doi/10.1007/s11069-023-06322-1&rft_dat=%3Cproquest_cross%3E2973348875%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2973348875&rft_id=info:pmid/&rfr_iscdi=true |