Toward the reliable prediction of reservoir landslide displacement using earthworm optimization algorithm-optimized support vector regression (EOA-SVR)

Reliable prediction of reservoir displacement is essential for practical applications. Machine learning offers an attractive and accessible set of tools for the displacement prediction of reservoir landslides. In the present study, earthworm optimization algorithm-optimized support vector regression...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Natural hazards (Dordrecht) 2024-03, Vol.120 (4), p.3165-3188
Hauptverfasser: Liu, Zhiyang, Ma, Junwei, Xia, Ding, Jiang, Sheng, Ren, Zhiyuan, Tan, Chunhai, Lei, Dongze, Guo, Haixiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3188
container_issue 4
container_start_page 3165
container_title Natural hazards (Dordrecht)
container_volume 120
creator Liu, Zhiyang
Ma, Junwei
Xia, Ding
Jiang, Sheng
Ren, Zhiyuan
Tan, Chunhai
Lei, Dongze
Guo, Haixiang
description Reliable prediction of reservoir displacement is essential for practical applications. Machine learning offers an attractive and accessible set of tools for the displacement prediction of reservoir landslides. In the present study, earthworm optimization algorithm-optimized support vector regression (EOA-SVR) was proposed for the reliable prediction of reservoir landslide displacement. The proposed approach was evaluated and compared with metaheuristics, including artificial bee colony (ABC), biogeography-based optimization (BBO), genetic algorithm (GA), gray wolf optimization (GWO), particle swarm optimization (PSO), and water cycle algorithm (WCA), by the Friedman and post hoc Nemenyi tests. The results from the Baishuihe landslide showed that the EOA-optimized SVR provided satisfactory performance with a Kling–Gupta efficiency (KGE) greater than 0.98 and nearly optimal values of the coefficient of determination. Significant performance differences were revealed between the compared metaheuristics. The EOA is superior with respect to both performance and stability. The hyperparameter sensitivity analysis demonstrated that the EOA can stably provide reliable predictions by maintaining the optimal solution. The experimental results from the Baishuihe landslide indicate that the EOA-optimized SVR is promising for accurate and reliable prediction of reservoir landslide displacements, thus aiding in medium- and long-term landslide early warning.
doi_str_mv 10.1007/s11069-023-06322-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2973348875</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2973348875</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-194d000771f925a36e3f777f004ac7198875f94755eb6a7c787c3deeb47997003</originalsourceid><addsrcrecordid>eNp9kc1q3DAQx0VJoNtNX6AnQS_tQc3Isq3VMYSkKQQW0iTkJrT2eFfBttyRdkP7InndaLOB3nIaZvh_wPwY-yLhhwTQp1FKqI2AQgmoVVEI-YHNZKXzuijhiM3AFFKAgoeP7FOMjwBS1oWZsefb8OSo5WmDnLD3btUjnwhb3yQfRh66fI5Iu-CJ925sY-9b5K2PU-8aHHBMfBv9uOboKG2eAg08TMkP_p97DXD9OpBPm0G8nbHlcTtNgRLfYZMC5YJ17oh79beL5Zn4fX_z_YQdd66P-Pltztnd5cXt-ZW4Xv78dX52LRolTRLSlC3kB2jZmaJyqkbVaa07gNI1WprFQledKXVV4ap2utEL3agWcVVqYzSAmrOvh9yJwp8txmQfw5bGXGkLo5Uq9wlZVRxUDYUYCTs7kR8c_bUS7B6APQCwGYB9BWBlNqmDKWbxuEb6H_2O6wWcxYvT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2973348875</pqid></control><display><type>article</type><title>Toward the reliable prediction of reservoir landslide displacement using earthworm optimization algorithm-optimized support vector regression (EOA-SVR)</title><source>SpringerLink Journals</source><creator>Liu, Zhiyang ; Ma, Junwei ; Xia, Ding ; Jiang, Sheng ; Ren, Zhiyuan ; Tan, Chunhai ; Lei, Dongze ; Guo, Haixiang</creator><creatorcontrib>Liu, Zhiyang ; Ma, Junwei ; Xia, Ding ; Jiang, Sheng ; Ren, Zhiyuan ; Tan, Chunhai ; Lei, Dongze ; Guo, Haixiang</creatorcontrib><description>Reliable prediction of reservoir displacement is essential for practical applications. Machine learning offers an attractive and accessible set of tools for the displacement prediction of reservoir landslides. In the present study, earthworm optimization algorithm-optimized support vector regression (EOA-SVR) was proposed for the reliable prediction of reservoir landslide displacement. The proposed approach was evaluated and compared with metaheuristics, including artificial bee colony (ABC), biogeography-based optimization (BBO), genetic algorithm (GA), gray wolf optimization (GWO), particle swarm optimization (PSO), and water cycle algorithm (WCA), by the Friedman and post hoc Nemenyi tests. The results from the Baishuihe landslide showed that the EOA-optimized SVR provided satisfactory performance with a Kling–Gupta efficiency (KGE) greater than 0.98 and nearly optimal values of the coefficient of determination. Significant performance differences were revealed between the compared metaheuristics. The EOA is superior with respect to both performance and stability. The hyperparameter sensitivity analysis demonstrated that the EOA can stably provide reliable predictions by maintaining the optimal solution. The experimental results from the Baishuihe landslide indicate that the EOA-optimized SVR is promising for accurate and reliable prediction of reservoir landslide displacements, thus aiding in medium- and long-term landslide early warning.</description><identifier>ISSN: 0921-030X</identifier><identifier>EISSN: 1573-0840</identifier><identifier>DOI: 10.1007/s11069-023-06322-1</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algorithms ; Biogeography ; Civil Engineering ; Earth and Environmental Science ; Earth Sciences ; Environmental Management ; Genetic algorithms ; Geophysics/Geodesy ; Geotechnical Engineering &amp; Applied Earth Sciences ; Heuristic methods ; Hydrogeology ; Hydrologic cycle ; Hydrological cycle ; Landslide warnings ; Landslides ; Landslides &amp; mudslides ; Machine learning ; Natural Hazards ; Optimization algorithms ; Original Paper ; Particle swarm optimization ; Predictions ; Reservoirs ; Sensitivity analysis ; Stability analysis ; Support vector machines ; Swarm intelligence ; Worms</subject><ispartof>Natural hazards (Dordrecht), 2024-03, Vol.120 (4), p.3165-3188</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-194d000771f925a36e3f777f004ac7198875f94755eb6a7c787c3deeb47997003</citedby><cites>FETCH-LOGICAL-c319t-194d000771f925a36e3f777f004ac7198875f94755eb6a7c787c3deeb47997003</cites><orcidid>0000-0001-8408-2821</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11069-023-06322-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11069-023-06322-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Liu, Zhiyang</creatorcontrib><creatorcontrib>Ma, Junwei</creatorcontrib><creatorcontrib>Xia, Ding</creatorcontrib><creatorcontrib>Jiang, Sheng</creatorcontrib><creatorcontrib>Ren, Zhiyuan</creatorcontrib><creatorcontrib>Tan, Chunhai</creatorcontrib><creatorcontrib>Lei, Dongze</creatorcontrib><creatorcontrib>Guo, Haixiang</creatorcontrib><title>Toward the reliable prediction of reservoir landslide displacement using earthworm optimization algorithm-optimized support vector regression (EOA-SVR)</title><title>Natural hazards (Dordrecht)</title><addtitle>Nat Hazards</addtitle><description>Reliable prediction of reservoir displacement is essential for practical applications. Machine learning offers an attractive and accessible set of tools for the displacement prediction of reservoir landslides. In the present study, earthworm optimization algorithm-optimized support vector regression (EOA-SVR) was proposed for the reliable prediction of reservoir landslide displacement. The proposed approach was evaluated and compared with metaheuristics, including artificial bee colony (ABC), biogeography-based optimization (BBO), genetic algorithm (GA), gray wolf optimization (GWO), particle swarm optimization (PSO), and water cycle algorithm (WCA), by the Friedman and post hoc Nemenyi tests. The results from the Baishuihe landslide showed that the EOA-optimized SVR provided satisfactory performance with a Kling–Gupta efficiency (KGE) greater than 0.98 and nearly optimal values of the coefficient of determination. Significant performance differences were revealed between the compared metaheuristics. The EOA is superior with respect to both performance and stability. The hyperparameter sensitivity analysis demonstrated that the EOA can stably provide reliable predictions by maintaining the optimal solution. The experimental results from the Baishuihe landslide indicate that the EOA-optimized SVR is promising for accurate and reliable prediction of reservoir landslide displacements, thus aiding in medium- and long-term landslide early warning.</description><subject>Algorithms</subject><subject>Biogeography</subject><subject>Civil Engineering</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Environmental Management</subject><subject>Genetic algorithms</subject><subject>Geophysics/Geodesy</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>Heuristic methods</subject><subject>Hydrogeology</subject><subject>Hydrologic cycle</subject><subject>Hydrological cycle</subject><subject>Landslide warnings</subject><subject>Landslides</subject><subject>Landslides &amp; mudslides</subject><subject>Machine learning</subject><subject>Natural Hazards</subject><subject>Optimization algorithms</subject><subject>Original Paper</subject><subject>Particle swarm optimization</subject><subject>Predictions</subject><subject>Reservoirs</subject><subject>Sensitivity analysis</subject><subject>Stability analysis</subject><subject>Support vector machines</subject><subject>Swarm intelligence</subject><subject>Worms</subject><issn>0921-030X</issn><issn>1573-0840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kc1q3DAQx0VJoNtNX6AnQS_tQc3Isq3VMYSkKQQW0iTkJrT2eFfBttyRdkP7InndaLOB3nIaZvh_wPwY-yLhhwTQp1FKqI2AQgmoVVEI-YHNZKXzuijhiM3AFFKAgoeP7FOMjwBS1oWZsefb8OSo5WmDnLD3btUjnwhb3yQfRh66fI5Iu-CJ925sY-9b5K2PU-8aHHBMfBv9uOboKG2eAg08TMkP_p97DXD9OpBPm0G8nbHlcTtNgRLfYZMC5YJ17oh79beL5Zn4fX_z_YQdd66P-Pltztnd5cXt-ZW4Xv78dX52LRolTRLSlC3kB2jZmaJyqkbVaa07gNI1WprFQledKXVV4ap2utEL3agWcVVqYzSAmrOvh9yJwp8txmQfw5bGXGkLo5Uq9wlZVRxUDYUYCTs7kR8c_bUS7B6APQCwGYB9BWBlNqmDKWbxuEb6H_2O6wWcxYvT</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Liu, Zhiyang</creator><creator>Ma, Junwei</creator><creator>Xia, Ding</creator><creator>Jiang, Sheng</creator><creator>Ren, Zhiyuan</creator><creator>Tan, Chunhai</creator><creator>Lei, Dongze</creator><creator>Guo, Haixiang</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-8408-2821</orcidid></search><sort><creationdate>20240301</creationdate><title>Toward the reliable prediction of reservoir landslide displacement using earthworm optimization algorithm-optimized support vector regression (EOA-SVR)</title><author>Liu, Zhiyang ; Ma, Junwei ; Xia, Ding ; Jiang, Sheng ; Ren, Zhiyuan ; Tan, Chunhai ; Lei, Dongze ; Guo, Haixiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-194d000771f925a36e3f777f004ac7198875f94755eb6a7c787c3deeb47997003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Biogeography</topic><topic>Civil Engineering</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Environmental Management</topic><topic>Genetic algorithms</topic><topic>Geophysics/Geodesy</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>Heuristic methods</topic><topic>Hydrogeology</topic><topic>Hydrologic cycle</topic><topic>Hydrological cycle</topic><topic>Landslide warnings</topic><topic>Landslides</topic><topic>Landslides &amp; mudslides</topic><topic>Machine learning</topic><topic>Natural Hazards</topic><topic>Optimization algorithms</topic><topic>Original Paper</topic><topic>Particle swarm optimization</topic><topic>Predictions</topic><topic>Reservoirs</topic><topic>Sensitivity analysis</topic><topic>Stability analysis</topic><topic>Support vector machines</topic><topic>Swarm intelligence</topic><topic>Worms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Zhiyang</creatorcontrib><creatorcontrib>Ma, Junwei</creatorcontrib><creatorcontrib>Xia, Ding</creatorcontrib><creatorcontrib>Jiang, Sheng</creatorcontrib><creatorcontrib>Ren, Zhiyuan</creatorcontrib><creatorcontrib>Tan, Chunhai</creatorcontrib><creatorcontrib>Lei, Dongze</creatorcontrib><creatorcontrib>Guo, Haixiang</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Natural hazards (Dordrecht)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Zhiyang</au><au>Ma, Junwei</au><au>Xia, Ding</au><au>Jiang, Sheng</au><au>Ren, Zhiyuan</au><au>Tan, Chunhai</au><au>Lei, Dongze</au><au>Guo, Haixiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward the reliable prediction of reservoir landslide displacement using earthworm optimization algorithm-optimized support vector regression (EOA-SVR)</atitle><jtitle>Natural hazards (Dordrecht)</jtitle><stitle>Nat Hazards</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>120</volume><issue>4</issue><spage>3165</spage><epage>3188</epage><pages>3165-3188</pages><issn>0921-030X</issn><eissn>1573-0840</eissn><abstract>Reliable prediction of reservoir displacement is essential for practical applications. Machine learning offers an attractive and accessible set of tools for the displacement prediction of reservoir landslides. In the present study, earthworm optimization algorithm-optimized support vector regression (EOA-SVR) was proposed for the reliable prediction of reservoir landslide displacement. The proposed approach was evaluated and compared with metaheuristics, including artificial bee colony (ABC), biogeography-based optimization (BBO), genetic algorithm (GA), gray wolf optimization (GWO), particle swarm optimization (PSO), and water cycle algorithm (WCA), by the Friedman and post hoc Nemenyi tests. The results from the Baishuihe landslide showed that the EOA-optimized SVR provided satisfactory performance with a Kling–Gupta efficiency (KGE) greater than 0.98 and nearly optimal values of the coefficient of determination. Significant performance differences were revealed between the compared metaheuristics. The EOA is superior with respect to both performance and stability. The hyperparameter sensitivity analysis demonstrated that the EOA can stably provide reliable predictions by maintaining the optimal solution. The experimental results from the Baishuihe landslide indicate that the EOA-optimized SVR is promising for accurate and reliable prediction of reservoir landslide displacements, thus aiding in medium- and long-term landslide early warning.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11069-023-06322-1</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0001-8408-2821</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0921-030X
ispartof Natural hazards (Dordrecht), 2024-03, Vol.120 (4), p.3165-3188
issn 0921-030X
1573-0840
language eng
recordid cdi_proquest_journals_2973348875
source SpringerLink Journals
subjects Algorithms
Biogeography
Civil Engineering
Earth and Environmental Science
Earth Sciences
Environmental Management
Genetic algorithms
Geophysics/Geodesy
Geotechnical Engineering & Applied Earth Sciences
Heuristic methods
Hydrogeology
Hydrologic cycle
Hydrological cycle
Landslide warnings
Landslides
Landslides & mudslides
Machine learning
Natural Hazards
Optimization algorithms
Original Paper
Particle swarm optimization
Predictions
Reservoirs
Sensitivity analysis
Stability analysis
Support vector machines
Swarm intelligence
Worms
title Toward the reliable prediction of reservoir landslide displacement using earthworm optimization algorithm-optimized support vector regression (EOA-SVR)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T11%3A03%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20the%20reliable%20prediction%20of%20reservoir%20landslide%20displacement%20using%20earthworm%20optimization%20algorithm-optimized%20support%20vector%20regression%20(EOA-SVR)&rft.jtitle=Natural%20hazards%20(Dordrecht)&rft.au=Liu,%20Zhiyang&rft.date=2024-03-01&rft.volume=120&rft.issue=4&rft.spage=3165&rft.epage=3188&rft.pages=3165-3188&rft.issn=0921-030X&rft.eissn=1573-0840&rft_id=info:doi/10.1007/s11069-023-06322-1&rft_dat=%3Cproquest_cross%3E2973348875%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2973348875&rft_id=info:pmid/&rfr_iscdi=true