UAV-Assisted Maritime Search and Rescue: A Holistic Approach
In this paper, we explore the application of Unmanned Aerial Vehicles (UAVs) in maritime search and rescue (mSAR) missions, focusing on medium-sized fixed-wing drones and quadcopters. We address the challenges and limitations inherent in operating some of the different classes of UAVs, particularly...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-03 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Messmer, Martin Kiefer, Benjamin Varga, Leon Amadeus Zell, Andreas |
description | In this paper, we explore the application of Unmanned Aerial Vehicles (UAVs) in maritime search and rescue (mSAR) missions, focusing on medium-sized fixed-wing drones and quadcopters. We address the challenges and limitations inherent in operating some of the different classes of UAVs, particularly in search operations. Our research includes the development of a comprehensive software framework designed to enhance the efficiency and efficacy of SAR operations. This framework combines preliminary detection onboard UAVs with advanced object detection at ground stations, aiming to reduce visual strain and improve decision-making for operators. It will be made publicly available upon publication. We conduct experiments to evaluate various Region of Interest (RoI) proposal methods, especially by imposing simulated limited bandwidth on them, an important consideration when flying remote or offshore operations. This forces the algorithm to prioritize some predictions over others. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2973301311</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2973301311</sourcerecordid><originalsourceid>FETCH-proquest_journals_29733013113</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwCXUM03UsLs4sLklNUfBNLMosycxNVQhOTSxKzlBIzEtRCEotTi5NtVJwVPDIzwEqy0xWcCwoKMpPTM7gYWBNS8wpTuWF0twMym6uIc4eukDpwtLU4pL4rPzSojygVLyRpbmxsYGhsaGhMXGqAKKeNkY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2973301311</pqid></control><display><type>article</type><title>UAV-Assisted Maritime Search and Rescue: A Holistic Approach</title><source>Free E- Journals</source><creator>Messmer, Martin ; Kiefer, Benjamin ; Varga, Leon Amadeus ; Zell, Andreas</creator><creatorcontrib>Messmer, Martin ; Kiefer, Benjamin ; Varga, Leon Amadeus ; Zell, Andreas</creatorcontrib><description>In this paper, we explore the application of Unmanned Aerial Vehicles (UAVs) in maritime search and rescue (mSAR) missions, focusing on medium-sized fixed-wing drones and quadcopters. We address the challenges and limitations inherent in operating some of the different classes of UAVs, particularly in search operations. Our research includes the development of a comprehensive software framework designed to enhance the efficiency and efficacy of SAR operations. This framework combines preliminary detection onboard UAVs with advanced object detection at ground stations, aiming to reduce visual strain and improve decision-making for operators. It will be made publicly available upon publication. We conduct experiments to evaluate various Region of Interest (RoI) proposal methods, especially by imposing simulated limited bandwidth on them, an important consideration when flying remote or offshore operations. This forces the algorithm to prioritize some predictions over others.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Autonomous underwater vehicles ; Ground stations ; Helicopters ; Object recognition ; Search and rescue missions ; Unmanned aerial vehicles</subject><ispartof>arXiv.org, 2024-03</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>778,782</link.rule.ids></links><search><creatorcontrib>Messmer, Martin</creatorcontrib><creatorcontrib>Kiefer, Benjamin</creatorcontrib><creatorcontrib>Varga, Leon Amadeus</creatorcontrib><creatorcontrib>Zell, Andreas</creatorcontrib><title>UAV-Assisted Maritime Search and Rescue: A Holistic Approach</title><title>arXiv.org</title><description>In this paper, we explore the application of Unmanned Aerial Vehicles (UAVs) in maritime search and rescue (mSAR) missions, focusing on medium-sized fixed-wing drones and quadcopters. We address the challenges and limitations inherent in operating some of the different classes of UAVs, particularly in search operations. Our research includes the development of a comprehensive software framework designed to enhance the efficiency and efficacy of SAR operations. This framework combines preliminary detection onboard UAVs with advanced object detection at ground stations, aiming to reduce visual strain and improve decision-making for operators. It will be made publicly available upon publication. We conduct experiments to evaluate various Region of Interest (RoI) proposal methods, especially by imposing simulated limited bandwidth on them, an important consideration when flying remote or offshore operations. This forces the algorithm to prioritize some predictions over others.</description><subject>Algorithms</subject><subject>Autonomous underwater vehicles</subject><subject>Ground stations</subject><subject>Helicopters</subject><subject>Object recognition</subject><subject>Search and rescue missions</subject><subject>Unmanned aerial vehicles</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwCXUM03UsLs4sLklNUfBNLMosycxNVQhOTSxKzlBIzEtRCEotTi5NtVJwVPDIzwEqy0xWcCwoKMpPTM7gYWBNS8wpTuWF0twMym6uIc4eukDpwtLU4pL4rPzSojygVLyRpbmxsYGhsaGhMXGqAKKeNkY</recordid><startdate>20240321</startdate><enddate>20240321</enddate><creator>Messmer, Martin</creator><creator>Kiefer, Benjamin</creator><creator>Varga, Leon Amadeus</creator><creator>Zell, Andreas</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240321</creationdate><title>UAV-Assisted Maritime Search and Rescue: A Holistic Approach</title><author>Messmer, Martin ; Kiefer, Benjamin ; Varga, Leon Amadeus ; Zell, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29733013113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Autonomous underwater vehicles</topic><topic>Ground stations</topic><topic>Helicopters</topic><topic>Object recognition</topic><topic>Search and rescue missions</topic><topic>Unmanned aerial vehicles</topic><toplevel>online_resources</toplevel><creatorcontrib>Messmer, Martin</creatorcontrib><creatorcontrib>Kiefer, Benjamin</creatorcontrib><creatorcontrib>Varga, Leon Amadeus</creatorcontrib><creatorcontrib>Zell, Andreas</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Messmer, Martin</au><au>Kiefer, Benjamin</au><au>Varga, Leon Amadeus</au><au>Zell, Andreas</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>UAV-Assisted Maritime Search and Rescue: A Holistic Approach</atitle><jtitle>arXiv.org</jtitle><date>2024-03-21</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>In this paper, we explore the application of Unmanned Aerial Vehicles (UAVs) in maritime search and rescue (mSAR) missions, focusing on medium-sized fixed-wing drones and quadcopters. We address the challenges and limitations inherent in operating some of the different classes of UAVs, particularly in search operations. Our research includes the development of a comprehensive software framework designed to enhance the efficiency and efficacy of SAR operations. This framework combines preliminary detection onboard UAVs with advanced object detection at ground stations, aiming to reduce visual strain and improve decision-making for operators. It will be made publicly available upon publication. We conduct experiments to evaluate various Region of Interest (RoI) proposal methods, especially by imposing simulated limited bandwidth on them, an important consideration when flying remote or offshore operations. This forces the algorithm to prioritize some predictions over others.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2973301311 |
source | Free E- Journals |
subjects | Algorithms Autonomous underwater vehicles Ground stations Helicopters Object recognition Search and rescue missions Unmanned aerial vehicles |
title | UAV-Assisted Maritime Search and Rescue: A Holistic Approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T02%3A53%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=UAV-Assisted%20Maritime%20Search%20and%20Rescue:%20A%20Holistic%20Approach&rft.jtitle=arXiv.org&rft.au=Messmer,%20Martin&rft.date=2024-03-21&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2973301311%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2973301311&rft_id=info:pmid/&rfr_iscdi=true |