Spatio-Temporal Proximity-Aware Dual-Path Model for Panoramic Activity Recognition

Panoramic Activity Recognition (PAR) seeks to identify diverse human activities across different scales, from individual actions to social group and global activities in crowded panoramic scenes. PAR presents two major challenges: 1) recognizing the nuanced interactions among numerous individuals an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-03
Hauptverfasser: Lee, Sumin, Wang, Yooseung, Woo, Sangmin, Kim, Changick
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Lee, Sumin
Wang, Yooseung
Woo, Sangmin
Kim, Changick
description Panoramic Activity Recognition (PAR) seeks to identify diverse human activities across different scales, from individual actions to social group and global activities in crowded panoramic scenes. PAR presents two major challenges: 1) recognizing the nuanced interactions among numerous individuals and 2) understanding multi-granular human activities. To address these, we propose Social Proximity-aware Dual-Path Network (SPDP-Net) based on two key design principles. First, while previous works often focus on spatial distance among individuals within an image, we argue to consider the spatio-temporal proximity. It is crucial for individual relation encoding to correctly understand social dynamics. Secondly, deviating from existing hierarchical approaches (individual-to-social-to-global activity), we introduce a dual-path architecture for multi-granular activity recognition. This architecture comprises individual-to-global and individual-to-social paths, mutually reinforcing each other's task with global-local context through multiple layers. Through extensive experiments, we validate the effectiveness of the spatio-temporal proximity among individuals and the dual-path architecture in PAR. Furthermore, SPDP-Net achieves new state-of-the-art performance with 46.5\% of overall F1 score on JRDB-PAR dataset.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2973289241</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2973289241</sourcerecordid><originalsourceid>FETCH-proquest_journals_29732892413</originalsourceid><addsrcrecordid>eNqNzE0LgjAcx_ERBEn5HgadB_qfph6lB7oEUt5l2KzJ3GybPbz7dugFdPodvh9-MxQApTHJE4AFCq3toyiCTQZpSgN0vozMCU1qPozaMIkro99iEO5DyhczHO8mJknF3B2f9JVL3GmDK6a8HUSLy9aJp8f4zFt9U8JfqRWad0xaHv52idaHfb09ktHox8Sta3o9GeVTA0VGIS8giel_6gvu-z_I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2973289241</pqid></control><display><type>article</type><title>Spatio-Temporal Proximity-Aware Dual-Path Model for Panoramic Activity Recognition</title><source>Free E- Journals</source><creator>Lee, Sumin ; Wang, Yooseung ; Woo, Sangmin ; Kim, Changick</creator><creatorcontrib>Lee, Sumin ; Wang, Yooseung ; Woo, Sangmin ; Kim, Changick</creatorcontrib><description>Panoramic Activity Recognition (PAR) seeks to identify diverse human activities across different scales, from individual actions to social group and global activities in crowded panoramic scenes. PAR presents two major challenges: 1) recognizing the nuanced interactions among numerous individuals and 2) understanding multi-granular human activities. To address these, we propose Social Proximity-aware Dual-Path Network (SPDP-Net) based on two key design principles. First, while previous works often focus on spatial distance among individuals within an image, we argue to consider the spatio-temporal proximity. It is crucial for individual relation encoding to correctly understand social dynamics. Secondly, deviating from existing hierarchical approaches (individual-to-social-to-global activity), we introduce a dual-path architecture for multi-granular activity recognition. This architecture comprises individual-to-global and individual-to-social paths, mutually reinforcing each other's task with global-local context through multiple layers. Through extensive experiments, we validate the effectiveness of the spatio-temporal proximity among individuals and the dual-path architecture in PAR. Furthermore, SPDP-Net achieves new state-of-the-art performance with 46.5\% of overall F1 score on JRDB-PAR dataset.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Activity recognition ; Proximity</subject><ispartof>arXiv.org, 2024-03</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Lee, Sumin</creatorcontrib><creatorcontrib>Wang, Yooseung</creatorcontrib><creatorcontrib>Woo, Sangmin</creatorcontrib><creatorcontrib>Kim, Changick</creatorcontrib><title>Spatio-Temporal Proximity-Aware Dual-Path Model for Panoramic Activity Recognition</title><title>arXiv.org</title><description>Panoramic Activity Recognition (PAR) seeks to identify diverse human activities across different scales, from individual actions to social group and global activities in crowded panoramic scenes. PAR presents two major challenges: 1) recognizing the nuanced interactions among numerous individuals and 2) understanding multi-granular human activities. To address these, we propose Social Proximity-aware Dual-Path Network (SPDP-Net) based on two key design principles. First, while previous works often focus on spatial distance among individuals within an image, we argue to consider the spatio-temporal proximity. It is crucial for individual relation encoding to correctly understand social dynamics. Secondly, deviating from existing hierarchical approaches (individual-to-social-to-global activity), we introduce a dual-path architecture for multi-granular activity recognition. This architecture comprises individual-to-global and individual-to-social paths, mutually reinforcing each other's task with global-local context through multiple layers. Through extensive experiments, we validate the effectiveness of the spatio-temporal proximity among individuals and the dual-path architecture in PAR. Furthermore, SPDP-Net achieves new state-of-the-art performance with 46.5\% of overall F1 score on JRDB-PAR dataset.</description><subject>Activity recognition</subject><subject>Proximity</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNzE0LgjAcx_ERBEn5HgadB_qfph6lB7oEUt5l2KzJ3GybPbz7dugFdPodvh9-MxQApTHJE4AFCq3toyiCTQZpSgN0vozMCU1qPozaMIkro99iEO5DyhczHO8mJknF3B2f9JVL3GmDK6a8HUSLy9aJp8f4zFt9U8JfqRWad0xaHv52idaHfb09ktHox8Sta3o9GeVTA0VGIS8giel_6gvu-z_I</recordid><startdate>20240321</startdate><enddate>20240321</enddate><creator>Lee, Sumin</creator><creator>Wang, Yooseung</creator><creator>Woo, Sangmin</creator><creator>Kim, Changick</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240321</creationdate><title>Spatio-Temporal Proximity-Aware Dual-Path Model for Panoramic Activity Recognition</title><author>Lee, Sumin ; Wang, Yooseung ; Woo, Sangmin ; Kim, Changick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29732892413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Activity recognition</topic><topic>Proximity</topic><toplevel>online_resources</toplevel><creatorcontrib>Lee, Sumin</creatorcontrib><creatorcontrib>Wang, Yooseung</creatorcontrib><creatorcontrib>Woo, Sangmin</creatorcontrib><creatorcontrib>Kim, Changick</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Sumin</au><au>Wang, Yooseung</au><au>Woo, Sangmin</au><au>Kim, Changick</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Spatio-Temporal Proximity-Aware Dual-Path Model for Panoramic Activity Recognition</atitle><jtitle>arXiv.org</jtitle><date>2024-03-21</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Panoramic Activity Recognition (PAR) seeks to identify diverse human activities across different scales, from individual actions to social group and global activities in crowded panoramic scenes. PAR presents two major challenges: 1) recognizing the nuanced interactions among numerous individuals and 2) understanding multi-granular human activities. To address these, we propose Social Proximity-aware Dual-Path Network (SPDP-Net) based on two key design principles. First, while previous works often focus on spatial distance among individuals within an image, we argue to consider the spatio-temporal proximity. It is crucial for individual relation encoding to correctly understand social dynamics. Secondly, deviating from existing hierarchical approaches (individual-to-social-to-global activity), we introduce a dual-path architecture for multi-granular activity recognition. This architecture comprises individual-to-global and individual-to-social paths, mutually reinforcing each other's task with global-local context through multiple layers. Through extensive experiments, we validate the effectiveness of the spatio-temporal proximity among individuals and the dual-path architecture in PAR. Furthermore, SPDP-Net achieves new state-of-the-art performance with 46.5\% of overall F1 score on JRDB-PAR dataset.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2973289241
source Free E- Journals
subjects Activity recognition
Proximity
title Spatio-Temporal Proximity-Aware Dual-Path Model for Panoramic Activity Recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A16%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Spatio-Temporal%20Proximity-Aware%20Dual-Path%20Model%20for%20Panoramic%20Activity%20Recognition&rft.jtitle=arXiv.org&rft.au=Lee,%20Sumin&rft.date=2024-03-21&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2973289241%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2973289241&rft_id=info:pmid/&rfr_iscdi=true