Bayesian Optimization for Sample-Efficient Policy Improvement in Robotic Manipulation
Sample efficient learning of manipulation skills poses a major challenge in robotics. While recent approaches demonstrate impressive advances in the type of task that can be addressed and the sensing modalities that can be incorporated, they still require large amounts of training data. Especially w...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-03 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Röfer, Adrian Nematollahi, Iman Welschehold, Tim Burgard, Wolfram Valada, Abhinav |
description | Sample efficient learning of manipulation skills poses a major challenge in robotics. While recent approaches demonstrate impressive advances in the type of task that can be addressed and the sensing modalities that can be incorporated, they still require large amounts of training data. Especially with regard to learning actions on robots in the real world, this poses a major problem due to the high costs associated with both demonstrations and real-world robot interactions. To address this challenge, we introduce BOpt-GMM, a hybrid approach that combines imitation learning with own experience collection. We first learn a skill model as a dynamical system encoded in a Gaussian Mixture Model from a few demonstrations. We then improve this model with Bayesian optimization building on a small number of autonomous skill executions in a sparse reward setting. We demonstrate the sample efficiency of our approach on multiple complex manipulation skills in both simulations and real-world experiments. Furthermore, we make the code and pre-trained models publicly available at http://bopt-gmm. cs.uni-freiburg.de. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2973287206</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2973287206</sourcerecordid><originalsourceid>FETCH-proquest_journals_29732872063</originalsourceid><addsrcrecordid>eNqNi8kKwjAURYMgWLT_EHBdiIkd3CoVXYjisC6xJPBKJptUqF9vFT_A1YF77hmhiDK2SIolpRMUe98QQmiW0zRlEbqteS88cIOPLoCGFw9gDZa2xReunRJJKSXUIEzAJ6ug7vFeu9Y-hf5MYPDZ3m2AGh-4Adepbz9DY8mVF_GPUzTfltfNLhnKRyd8qBrbtWZQFV3ljBY5JRn77_UGC_hBbA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2973287206</pqid></control><display><type>article</type><title>Bayesian Optimization for Sample-Efficient Policy Improvement in Robotic Manipulation</title><source>Free E- Journals</source><creator>Röfer, Adrian ; Nematollahi, Iman ; Welschehold, Tim ; Burgard, Wolfram ; Valada, Abhinav</creator><creatorcontrib>Röfer, Adrian ; Nematollahi, Iman ; Welschehold, Tim ; Burgard, Wolfram ; Valada, Abhinav</creatorcontrib><description>Sample efficient learning of manipulation skills poses a major challenge in robotics. While recent approaches demonstrate impressive advances in the type of task that can be addressed and the sensing modalities that can be incorporated, they still require large amounts of training data. Especially with regard to learning actions on robots in the real world, this poses a major problem due to the high costs associated with both demonstrations and real-world robot interactions. To address this challenge, we introduce BOpt-GMM, a hybrid approach that combines imitation learning with own experience collection. We first learn a skill model as a dynamical system encoded in a Gaussian Mixture Model from a few demonstrations. We then improve this model with Bayesian optimization building on a small number of autonomous skill executions in a sparse reward setting. We demonstrate the sample efficiency of our approach on multiple complex manipulation skills in both simulations and real-world experiments. Furthermore, we make the code and pre-trained models publicly available at http://bopt-gmm. cs.uni-freiburg.de.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Bayesian analysis ; Optimization ; Probabilistic models ; Robot learning ; Robotics ; Robots ; Skills</subject><ispartof>arXiv.org, 2024-03</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Röfer, Adrian</creatorcontrib><creatorcontrib>Nematollahi, Iman</creatorcontrib><creatorcontrib>Welschehold, Tim</creatorcontrib><creatorcontrib>Burgard, Wolfram</creatorcontrib><creatorcontrib>Valada, Abhinav</creatorcontrib><title>Bayesian Optimization for Sample-Efficient Policy Improvement in Robotic Manipulation</title><title>arXiv.org</title><description>Sample efficient learning of manipulation skills poses a major challenge in robotics. While recent approaches demonstrate impressive advances in the type of task that can be addressed and the sensing modalities that can be incorporated, they still require large amounts of training data. Especially with regard to learning actions on robots in the real world, this poses a major problem due to the high costs associated with both demonstrations and real-world robot interactions. To address this challenge, we introduce BOpt-GMM, a hybrid approach that combines imitation learning with own experience collection. We first learn a skill model as a dynamical system encoded in a Gaussian Mixture Model from a few demonstrations. We then improve this model with Bayesian optimization building on a small number of autonomous skill executions in a sparse reward setting. We demonstrate the sample efficiency of our approach on multiple complex manipulation skills in both simulations and real-world experiments. Furthermore, we make the code and pre-trained models publicly available at http://bopt-gmm. cs.uni-freiburg.de.</description><subject>Bayesian analysis</subject><subject>Optimization</subject><subject>Probabilistic models</subject><subject>Robot learning</subject><subject>Robotics</subject><subject>Robots</subject><subject>Skills</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi8kKwjAURYMgWLT_EHBdiIkd3CoVXYjisC6xJPBKJptUqF9vFT_A1YF77hmhiDK2SIolpRMUe98QQmiW0zRlEbqteS88cIOPLoCGFw9gDZa2xReunRJJKSXUIEzAJ6ug7vFeu9Y-hf5MYPDZ3m2AGh-4Adepbz9DY8mVF_GPUzTfltfNLhnKRyd8qBrbtWZQFV3ljBY5JRn77_UGC_hBbA</recordid><startdate>20240321</startdate><enddate>20240321</enddate><creator>Röfer, Adrian</creator><creator>Nematollahi, Iman</creator><creator>Welschehold, Tim</creator><creator>Burgard, Wolfram</creator><creator>Valada, Abhinav</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240321</creationdate><title>Bayesian Optimization for Sample-Efficient Policy Improvement in Robotic Manipulation</title><author>Röfer, Adrian ; Nematollahi, Iman ; Welschehold, Tim ; Burgard, Wolfram ; Valada, Abhinav</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29732872063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bayesian analysis</topic><topic>Optimization</topic><topic>Probabilistic models</topic><topic>Robot learning</topic><topic>Robotics</topic><topic>Robots</topic><topic>Skills</topic><toplevel>online_resources</toplevel><creatorcontrib>Röfer, Adrian</creatorcontrib><creatorcontrib>Nematollahi, Iman</creatorcontrib><creatorcontrib>Welschehold, Tim</creatorcontrib><creatorcontrib>Burgard, Wolfram</creatorcontrib><creatorcontrib>Valada, Abhinav</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Röfer, Adrian</au><au>Nematollahi, Iman</au><au>Welschehold, Tim</au><au>Burgard, Wolfram</au><au>Valada, Abhinav</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Bayesian Optimization for Sample-Efficient Policy Improvement in Robotic Manipulation</atitle><jtitle>arXiv.org</jtitle><date>2024-03-21</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Sample efficient learning of manipulation skills poses a major challenge in robotics. While recent approaches demonstrate impressive advances in the type of task that can be addressed and the sensing modalities that can be incorporated, they still require large amounts of training data. Especially with regard to learning actions on robots in the real world, this poses a major problem due to the high costs associated with both demonstrations and real-world robot interactions. To address this challenge, we introduce BOpt-GMM, a hybrid approach that combines imitation learning with own experience collection. We first learn a skill model as a dynamical system encoded in a Gaussian Mixture Model from a few demonstrations. We then improve this model with Bayesian optimization building on a small number of autonomous skill executions in a sparse reward setting. We demonstrate the sample efficiency of our approach on multiple complex manipulation skills in both simulations and real-world experiments. Furthermore, we make the code and pre-trained models publicly available at http://bopt-gmm. cs.uni-freiburg.de.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2973287206 |
source | Free E- Journals |
subjects | Bayesian analysis Optimization Probabilistic models Robot learning Robotics Robots Skills |
title | Bayesian Optimization for Sample-Efficient Policy Improvement in Robotic Manipulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T06%3A39%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Bayesian%20Optimization%20for%20Sample-Efficient%20Policy%20Improvement%20in%20Robotic%20Manipulation&rft.jtitle=arXiv.org&rft.au=R%C3%B6fer,%20Adrian&rft.date=2024-03-21&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2973287206%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2973287206&rft_id=info:pmid/&rfr_iscdi=true |