Bayesian Optimization for Sample-Efficient Policy Improvement in Robotic Manipulation

Sample efficient learning of manipulation skills poses a major challenge in robotics. While recent approaches demonstrate impressive advances in the type of task that can be addressed and the sensing modalities that can be incorporated, they still require large amounts of training data. Especially w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-03
Hauptverfasser: Röfer, Adrian, Nematollahi, Iman, Welschehold, Tim, Burgard, Wolfram, Valada, Abhinav
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Röfer, Adrian
Nematollahi, Iman
Welschehold, Tim
Burgard, Wolfram
Valada, Abhinav
description Sample efficient learning of manipulation skills poses a major challenge in robotics. While recent approaches demonstrate impressive advances in the type of task that can be addressed and the sensing modalities that can be incorporated, they still require large amounts of training data. Especially with regard to learning actions on robots in the real world, this poses a major problem due to the high costs associated with both demonstrations and real-world robot interactions. To address this challenge, we introduce BOpt-GMM, a hybrid approach that combines imitation learning with own experience collection. We first learn a skill model as a dynamical system encoded in a Gaussian Mixture Model from a few demonstrations. We then improve this model with Bayesian optimization building on a small number of autonomous skill executions in a sparse reward setting. We demonstrate the sample efficiency of our approach on multiple complex manipulation skills in both simulations and real-world experiments. Furthermore, we make the code and pre-trained models publicly available at http://bopt-gmm. cs.uni-freiburg.de.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2973287206</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2973287206</sourcerecordid><originalsourceid>FETCH-proquest_journals_29732872063</originalsourceid><addsrcrecordid>eNqNi8kKwjAURYMgWLT_EHBdiIkd3CoVXYjisC6xJPBKJptUqF9vFT_A1YF77hmhiDK2SIolpRMUe98QQmiW0zRlEbqteS88cIOPLoCGFw9gDZa2xReunRJJKSXUIEzAJ6ug7vFeu9Y-hf5MYPDZ3m2AGh-4Adepbz9DY8mVF_GPUzTfltfNLhnKRyd8qBrbtWZQFV3ljBY5JRn77_UGC_hBbA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2973287206</pqid></control><display><type>article</type><title>Bayesian Optimization for Sample-Efficient Policy Improvement in Robotic Manipulation</title><source>Free E- Journals</source><creator>Röfer, Adrian ; Nematollahi, Iman ; Welschehold, Tim ; Burgard, Wolfram ; Valada, Abhinav</creator><creatorcontrib>Röfer, Adrian ; Nematollahi, Iman ; Welschehold, Tim ; Burgard, Wolfram ; Valada, Abhinav</creatorcontrib><description>Sample efficient learning of manipulation skills poses a major challenge in robotics. While recent approaches demonstrate impressive advances in the type of task that can be addressed and the sensing modalities that can be incorporated, they still require large amounts of training data. Especially with regard to learning actions on robots in the real world, this poses a major problem due to the high costs associated with both demonstrations and real-world robot interactions. To address this challenge, we introduce BOpt-GMM, a hybrid approach that combines imitation learning with own experience collection. We first learn a skill model as a dynamical system encoded in a Gaussian Mixture Model from a few demonstrations. We then improve this model with Bayesian optimization building on a small number of autonomous skill executions in a sparse reward setting. We demonstrate the sample efficiency of our approach on multiple complex manipulation skills in both simulations and real-world experiments. Furthermore, we make the code and pre-trained models publicly available at http://bopt-gmm. cs.uni-freiburg.de.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Bayesian analysis ; Optimization ; Probabilistic models ; Robot learning ; Robotics ; Robots ; Skills</subject><ispartof>arXiv.org, 2024-03</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Röfer, Adrian</creatorcontrib><creatorcontrib>Nematollahi, Iman</creatorcontrib><creatorcontrib>Welschehold, Tim</creatorcontrib><creatorcontrib>Burgard, Wolfram</creatorcontrib><creatorcontrib>Valada, Abhinav</creatorcontrib><title>Bayesian Optimization for Sample-Efficient Policy Improvement in Robotic Manipulation</title><title>arXiv.org</title><description>Sample efficient learning of manipulation skills poses a major challenge in robotics. While recent approaches demonstrate impressive advances in the type of task that can be addressed and the sensing modalities that can be incorporated, they still require large amounts of training data. Especially with regard to learning actions on robots in the real world, this poses a major problem due to the high costs associated with both demonstrations and real-world robot interactions. To address this challenge, we introduce BOpt-GMM, a hybrid approach that combines imitation learning with own experience collection. We first learn a skill model as a dynamical system encoded in a Gaussian Mixture Model from a few demonstrations. We then improve this model with Bayesian optimization building on a small number of autonomous skill executions in a sparse reward setting. We demonstrate the sample efficiency of our approach on multiple complex manipulation skills in both simulations and real-world experiments. Furthermore, we make the code and pre-trained models publicly available at http://bopt-gmm. cs.uni-freiburg.de.</description><subject>Bayesian analysis</subject><subject>Optimization</subject><subject>Probabilistic models</subject><subject>Robot learning</subject><subject>Robotics</subject><subject>Robots</subject><subject>Skills</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi8kKwjAURYMgWLT_EHBdiIkd3CoVXYjisC6xJPBKJptUqF9vFT_A1YF77hmhiDK2SIolpRMUe98QQmiW0zRlEbqteS88cIOPLoCGFw9gDZa2xReunRJJKSXUIEzAJ6ug7vFeu9Y-hf5MYPDZ3m2AGh-4Adepbz9DY8mVF_GPUzTfltfNLhnKRyd8qBrbtWZQFV3ljBY5JRn77_UGC_hBbA</recordid><startdate>20240321</startdate><enddate>20240321</enddate><creator>Röfer, Adrian</creator><creator>Nematollahi, Iman</creator><creator>Welschehold, Tim</creator><creator>Burgard, Wolfram</creator><creator>Valada, Abhinav</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240321</creationdate><title>Bayesian Optimization for Sample-Efficient Policy Improvement in Robotic Manipulation</title><author>Röfer, Adrian ; Nematollahi, Iman ; Welschehold, Tim ; Burgard, Wolfram ; Valada, Abhinav</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29732872063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bayesian analysis</topic><topic>Optimization</topic><topic>Probabilistic models</topic><topic>Robot learning</topic><topic>Robotics</topic><topic>Robots</topic><topic>Skills</topic><toplevel>online_resources</toplevel><creatorcontrib>Röfer, Adrian</creatorcontrib><creatorcontrib>Nematollahi, Iman</creatorcontrib><creatorcontrib>Welschehold, Tim</creatorcontrib><creatorcontrib>Burgard, Wolfram</creatorcontrib><creatorcontrib>Valada, Abhinav</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Röfer, Adrian</au><au>Nematollahi, Iman</au><au>Welschehold, Tim</au><au>Burgard, Wolfram</au><au>Valada, Abhinav</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Bayesian Optimization for Sample-Efficient Policy Improvement in Robotic Manipulation</atitle><jtitle>arXiv.org</jtitle><date>2024-03-21</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Sample efficient learning of manipulation skills poses a major challenge in robotics. While recent approaches demonstrate impressive advances in the type of task that can be addressed and the sensing modalities that can be incorporated, they still require large amounts of training data. Especially with regard to learning actions on robots in the real world, this poses a major problem due to the high costs associated with both demonstrations and real-world robot interactions. To address this challenge, we introduce BOpt-GMM, a hybrid approach that combines imitation learning with own experience collection. We first learn a skill model as a dynamical system encoded in a Gaussian Mixture Model from a few demonstrations. We then improve this model with Bayesian optimization building on a small number of autonomous skill executions in a sparse reward setting. We demonstrate the sample efficiency of our approach on multiple complex manipulation skills in both simulations and real-world experiments. Furthermore, we make the code and pre-trained models publicly available at http://bopt-gmm. cs.uni-freiburg.de.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2973287206
source Free E- Journals
subjects Bayesian analysis
Optimization
Probabilistic models
Robot learning
Robotics
Robots
Skills
title Bayesian Optimization for Sample-Efficient Policy Improvement in Robotic Manipulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T06%3A39%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Bayesian%20Optimization%20for%20Sample-Efficient%20Policy%20Improvement%20in%20Robotic%20Manipulation&rft.jtitle=arXiv.org&rft.au=R%C3%B6fer,%20Adrian&rft.date=2024-03-21&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2973287206%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2973287206&rft_id=info:pmid/&rfr_iscdi=true