The Bid Picture: Auction-Inspired Multi-player Generative Adversarial Networks Training

This article proposes auction-inspired multi-player generative adversarial networks training, which mitigates the mode collapse problem of GANs. Mode collapse occurs when an over-fitted generator generates a limited range of samples, often concentrating on a small subset of the data distribution. De...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-03
Hauptverfasser: Joo Yong Shim, Jean Seong Bjorn Choe, Jong-Kook, Kim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Joo Yong Shim
Jean Seong Bjorn Choe
Jong-Kook, Kim
description This article proposes auction-inspired multi-player generative adversarial networks training, which mitigates the mode collapse problem of GANs. Mode collapse occurs when an over-fitted generator generates a limited range of samples, often concentrating on a small subset of the data distribution. Despite the restricted diversity of generated samples, the discriminator can still be deceived into distinguishing these samples as real samples from the actual distribution. In the absence of external standards, a model cannot recognize its failure during the training phase. We extend the two-player game of generative adversarial networks to the multi-player game. During the training, the values of each model are determined by the bids submitted by other players in an auction-like process.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2973280556</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2973280556</sourcerecordid><originalsourceid>FETCH-proquest_journals_29732805563</originalsourceid><addsrcrecordid>eNqNyrsKwjAUgOEgCBbtOwScCzWxF92qeBsUh4JjCe1RTy1pPUkqvr0OPoDTP3z_gHlCylmQzoUYMd-YOgxDESciiqTHLvkd-AorfsbSOoIlz1xpsdXBQZsOCSp-dI3FoGvUG4jvQAMpiz3wrOqBjCJUDT-BfbX0MDwnhRr1bcKGV9UY8H8ds-l2k6_3QUft04GxRd060l8qxCKRIg2jKJb_XR8wFEGU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2973280556</pqid></control><display><type>article</type><title>The Bid Picture: Auction-Inspired Multi-player Generative Adversarial Networks Training</title><source>Free E- Journals</source><creator>Joo Yong Shim ; Jean Seong Bjorn Choe ; Jong-Kook, Kim</creator><creatorcontrib>Joo Yong Shim ; Jean Seong Bjorn Choe ; Jong-Kook, Kim</creatorcontrib><description>This article proposes auction-inspired multi-player generative adversarial networks training, which mitigates the mode collapse problem of GANs. Mode collapse occurs when an over-fitted generator generates a limited range of samples, often concentrating on a small subset of the data distribution. Despite the restricted diversity of generated samples, the discriminator can still be deceived into distinguishing these samples as real samples from the actual distribution. In the absence of external standards, a model cannot recognize its failure during the training phase. We extend the two-player game of generative adversarial networks to the multi-player game. During the training, the values of each model are determined by the bids submitted by other players in an auction-like process.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Collapse ; Generative adversarial networks ; Training</subject><ispartof>arXiv.org, 2024-03</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Joo Yong Shim</creatorcontrib><creatorcontrib>Jean Seong Bjorn Choe</creatorcontrib><creatorcontrib>Jong-Kook, Kim</creatorcontrib><title>The Bid Picture: Auction-Inspired Multi-player Generative Adversarial Networks Training</title><title>arXiv.org</title><description>This article proposes auction-inspired multi-player generative adversarial networks training, which mitigates the mode collapse problem of GANs. Mode collapse occurs when an over-fitted generator generates a limited range of samples, often concentrating on a small subset of the data distribution. Despite the restricted diversity of generated samples, the discriminator can still be deceived into distinguishing these samples as real samples from the actual distribution. In the absence of external standards, a model cannot recognize its failure during the training phase. We extend the two-player game of generative adversarial networks to the multi-player game. During the training, the values of each model are determined by the bids submitted by other players in an auction-like process.</description><subject>Collapse</subject><subject>Generative adversarial networks</subject><subject>Training</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyrsKwjAUgOEgCBbtOwScCzWxF92qeBsUh4JjCe1RTy1pPUkqvr0OPoDTP3z_gHlCylmQzoUYMd-YOgxDESciiqTHLvkd-AorfsbSOoIlz1xpsdXBQZsOCSp-dI3FoGvUG4jvQAMpiz3wrOqBjCJUDT-BfbX0MDwnhRr1bcKGV9UY8H8ds-l2k6_3QUft04GxRd060l8qxCKRIg2jKJb_XR8wFEGU</recordid><startdate>20240320</startdate><enddate>20240320</enddate><creator>Joo Yong Shim</creator><creator>Jean Seong Bjorn Choe</creator><creator>Jong-Kook, Kim</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240320</creationdate><title>The Bid Picture: Auction-Inspired Multi-player Generative Adversarial Networks Training</title><author>Joo Yong Shim ; Jean Seong Bjorn Choe ; Jong-Kook, Kim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29732805563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Collapse</topic><topic>Generative adversarial networks</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Joo Yong Shim</creatorcontrib><creatorcontrib>Jean Seong Bjorn Choe</creatorcontrib><creatorcontrib>Jong-Kook, Kim</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Joo Yong Shim</au><au>Jean Seong Bjorn Choe</au><au>Jong-Kook, Kim</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>The Bid Picture: Auction-Inspired Multi-player Generative Adversarial Networks Training</atitle><jtitle>arXiv.org</jtitle><date>2024-03-20</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>This article proposes auction-inspired multi-player generative adversarial networks training, which mitigates the mode collapse problem of GANs. Mode collapse occurs when an over-fitted generator generates a limited range of samples, often concentrating on a small subset of the data distribution. Despite the restricted diversity of generated samples, the discriminator can still be deceived into distinguishing these samples as real samples from the actual distribution. In the absence of external standards, a model cannot recognize its failure during the training phase. We extend the two-player game of generative adversarial networks to the multi-player game. During the training, the values of each model are determined by the bids submitted by other players in an auction-like process.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2973280556
source Free E- Journals
subjects Collapse
Generative adversarial networks
Training
title The Bid Picture: Auction-Inspired Multi-player Generative Adversarial Networks Training
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T23%3A12%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=The%20Bid%20Picture:%20Auction-Inspired%20Multi-player%20Generative%20Adversarial%20Networks%20Training&rft.jtitle=arXiv.org&rft.au=Joo%20Yong%20Shim&rft.date=2024-03-20&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2973280556%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2973280556&rft_id=info:pmid/&rfr_iscdi=true