Deicing and status characteristics of dual-side pulsed surface dielectric barrier discharge

The deicing process and its status characteristics of dual-side pulsed surface dielectric barrier discharge (SDBD) are studied via electro-optical diagnostics, thermal properties, and numerical simulation. Experimental results show that the dual-side pulsed SDBD can remove the glaze ice compared to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids (1994) 2024-03, Vol.36 (3)
Hauptverfasser: Peng, Bangfa, Li, Jie, Jiang, Nan, Jiang, Yan, Chen, Zhanqing, Lei, Zhipeng, Song, Jiancheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Physics of fluids (1994)
container_volume 36
creator Peng, Bangfa
Li, Jie
Jiang, Nan
Jiang, Yan
Chen, Zhanqing
Lei, Zhipeng
Song, Jiancheng
description The deicing process and its status characteristics of dual-side pulsed surface dielectric barrier discharge (SDBD) are studied via electro-optical diagnostics, thermal properties, and numerical simulation. Experimental results show that the dual-side pulsed SDBD can remove the glaze ice compared to the traditional pulsed SDBD under the applied pulse voltage of 8 kV and a pulse frequency of 1 kHz. The maximal temperature of dual-side pulsed SDBD reaches 39.5 °C under the discharge time of 800 s, while the maximal temperature of traditional pulsed SDBD is still below ice point about −7.8 °C. Surface temperatures of dual-side pulsed SDBD demonstrate that the SDBD with a gap of 1 mm possesses prospects in deicing. The maximal surface temperature reaches 37.1 °C under the pulse of 8 kV after the discharge time of 90 s. Focusing on the thermal effect, a two-dimensional plasma fluid model is implemented, and the results also indicate that the dual-side pulsed SDBD with a gap of 1 mm produces a highest heat density among the three different configurations. Comparing the spatial-temporal evolutions of plasma on both dielectric sides, primary positive streamer has a longer propagation length of 8.6 mm than the secondary negative streamer, the primary negative streamer, and the secondary positive streamer, which induces a long heat covered area. Four stages of deicing process are analyzed through a series of electrical parameters under different covered ice conditions.
doi_str_mv 10.1063/5.0191124
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2973254837</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2973254837</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-5bb381e2179a4933b87a43174e011735ae4b883549047144a78601d182e4ab363</originalsourceid><addsrcrecordid>eNp90E1LAzEQBuAgCtaPg_8g4ElhaybJ5uMo9RMKXvTkYclmZ2tK3a1J9uC_N6U9e5pheHgHXkKugM2BKXFXzxlYAC6PyAyYsZVWSh3vds0qpQSckrOU1owxYbmakc8HDD4MK-qGjqbs8pSo_3LR-YwxpBx8omNPu8ltqhQ6pNtpk7DQKfbOI-0CbtDnGDxtXYwBYzmlXcIKL8hJ74q-PMxz8vH0-L54qZZvz6-L-2XludG5qttWGEAO2jpphWiNdlKAlsgAtKgdytYYUUvLpAYpnTaKQQeGo3StUOKcXO9zt3H8mTDlZj1OcSgvG2614LU0Qhd1s1c-jilF7JttDN8u_jbAml13Td0cuiv2dm-TD6WTMA7_4D8652zZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2973254837</pqid></control><display><type>article</type><title>Deicing and status characteristics of dual-side pulsed surface dielectric barrier discharge</title><source>American Institute of Physics (AIP) Journals</source><creator>Peng, Bangfa ; Li, Jie ; Jiang, Nan ; Jiang, Yan ; Chen, Zhanqing ; Lei, Zhipeng ; Song, Jiancheng</creator><creatorcontrib>Peng, Bangfa ; Li, Jie ; Jiang, Nan ; Jiang, Yan ; Chen, Zhanqing ; Lei, Zhipeng ; Song, Jiancheng</creatorcontrib><description>The deicing process and its status characteristics of dual-side pulsed surface dielectric barrier discharge (SDBD) are studied via electro-optical diagnostics, thermal properties, and numerical simulation. Experimental results show that the dual-side pulsed SDBD can remove the glaze ice compared to the traditional pulsed SDBD under the applied pulse voltage of 8 kV and a pulse frequency of 1 kHz. The maximal temperature of dual-side pulsed SDBD reaches 39.5 °C under the discharge time of 800 s, while the maximal temperature of traditional pulsed SDBD is still below ice point about −7.8 °C. Surface temperatures of dual-side pulsed SDBD demonstrate that the SDBD with a gap of 1 mm possesses prospects in deicing. The maximal surface temperature reaches 37.1 °C under the pulse of 8 kV after the discharge time of 90 s. Focusing on the thermal effect, a two-dimensional plasma fluid model is implemented, and the results also indicate that the dual-side pulsed SDBD with a gap of 1 mm produces a highest heat density among the three different configurations. Comparing the spatial-temporal evolutions of plasma on both dielectric sides, primary positive streamer has a longer propagation length of 8.6 mm than the secondary negative streamer, the primary negative streamer, and the secondary positive streamer, which induces a long heat covered area. Four stages of deicing process are analyzed through a series of electrical parameters under different covered ice conditions.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0191124</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Deicing ; Dielectric barrier discharge ; Ice cover ; Ice removal ; Mathematical models ; Optical properties ; Surface temperature ; Temperature ; Temperature effects ; Thermodynamic properties</subject><ispartof>Physics of fluids (1994), 2024-03, Vol.36 (3)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c287t-5bb381e2179a4933b87a43174e011735ae4b883549047144a78601d182e4ab363</cites><orcidid>0000-0002-8559-8501 ; 0000-0002-8690-0872 ; 0000-0001-5557-8721 ; 0000-0003-4938-5864 ; 0000-0001-8857-4460</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,790,4498,27901,27902</link.rule.ids></links><search><creatorcontrib>Peng, Bangfa</creatorcontrib><creatorcontrib>Li, Jie</creatorcontrib><creatorcontrib>Jiang, Nan</creatorcontrib><creatorcontrib>Jiang, Yan</creatorcontrib><creatorcontrib>Chen, Zhanqing</creatorcontrib><creatorcontrib>Lei, Zhipeng</creatorcontrib><creatorcontrib>Song, Jiancheng</creatorcontrib><title>Deicing and status characteristics of dual-side pulsed surface dielectric barrier discharge</title><title>Physics of fluids (1994)</title><description>The deicing process and its status characteristics of dual-side pulsed surface dielectric barrier discharge (SDBD) are studied via electro-optical diagnostics, thermal properties, and numerical simulation. Experimental results show that the dual-side pulsed SDBD can remove the glaze ice compared to the traditional pulsed SDBD under the applied pulse voltage of 8 kV and a pulse frequency of 1 kHz. The maximal temperature of dual-side pulsed SDBD reaches 39.5 °C under the discharge time of 800 s, while the maximal temperature of traditional pulsed SDBD is still below ice point about −7.8 °C. Surface temperatures of dual-side pulsed SDBD demonstrate that the SDBD with a gap of 1 mm possesses prospects in deicing. The maximal surface temperature reaches 37.1 °C under the pulse of 8 kV after the discharge time of 90 s. Focusing on the thermal effect, a two-dimensional plasma fluid model is implemented, and the results also indicate that the dual-side pulsed SDBD with a gap of 1 mm produces a highest heat density among the three different configurations. Comparing the spatial-temporal evolutions of plasma on both dielectric sides, primary positive streamer has a longer propagation length of 8.6 mm than the secondary negative streamer, the primary negative streamer, and the secondary positive streamer, which induces a long heat covered area. Four stages of deicing process are analyzed through a series of electrical parameters under different covered ice conditions.</description><subject>Deicing</subject><subject>Dielectric barrier discharge</subject><subject>Ice cover</subject><subject>Ice removal</subject><subject>Mathematical models</subject><subject>Optical properties</subject><subject>Surface temperature</subject><subject>Temperature</subject><subject>Temperature effects</subject><subject>Thermodynamic properties</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp90E1LAzEQBuAgCtaPg_8g4ElhaybJ5uMo9RMKXvTkYclmZ2tK3a1J9uC_N6U9e5pheHgHXkKugM2BKXFXzxlYAC6PyAyYsZVWSh3vds0qpQSckrOU1owxYbmakc8HDD4MK-qGjqbs8pSo_3LR-YwxpBx8omNPu8ltqhQ6pNtpk7DQKfbOI-0CbtDnGDxtXYwBYzmlXcIKL8hJ74q-PMxz8vH0-L54qZZvz6-L-2XludG5qttWGEAO2jpphWiNdlKAlsgAtKgdytYYUUvLpAYpnTaKQQeGo3StUOKcXO9zt3H8mTDlZj1OcSgvG2614LU0Qhd1s1c-jilF7JttDN8u_jbAml13Td0cuiv2dm-TD6WTMA7_4D8652zZ</recordid><startdate>202403</startdate><enddate>202403</enddate><creator>Peng, Bangfa</creator><creator>Li, Jie</creator><creator>Jiang, Nan</creator><creator>Jiang, Yan</creator><creator>Chen, Zhanqing</creator><creator>Lei, Zhipeng</creator><creator>Song, Jiancheng</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8559-8501</orcidid><orcidid>https://orcid.org/0000-0002-8690-0872</orcidid><orcidid>https://orcid.org/0000-0001-5557-8721</orcidid><orcidid>https://orcid.org/0000-0003-4938-5864</orcidid><orcidid>https://orcid.org/0000-0001-8857-4460</orcidid></search><sort><creationdate>202403</creationdate><title>Deicing and status characteristics of dual-side pulsed surface dielectric barrier discharge</title><author>Peng, Bangfa ; Li, Jie ; Jiang, Nan ; Jiang, Yan ; Chen, Zhanqing ; Lei, Zhipeng ; Song, Jiancheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-5bb381e2179a4933b87a43174e011735ae4b883549047144a78601d182e4ab363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Deicing</topic><topic>Dielectric barrier discharge</topic><topic>Ice cover</topic><topic>Ice removal</topic><topic>Mathematical models</topic><topic>Optical properties</topic><topic>Surface temperature</topic><topic>Temperature</topic><topic>Temperature effects</topic><topic>Thermodynamic properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Bangfa</creatorcontrib><creatorcontrib>Li, Jie</creatorcontrib><creatorcontrib>Jiang, Nan</creatorcontrib><creatorcontrib>Jiang, Yan</creatorcontrib><creatorcontrib>Chen, Zhanqing</creatorcontrib><creatorcontrib>Lei, Zhipeng</creatorcontrib><creatorcontrib>Song, Jiancheng</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Bangfa</au><au>Li, Jie</au><au>Jiang, Nan</au><au>Jiang, Yan</au><au>Chen, Zhanqing</au><au>Lei, Zhipeng</au><au>Song, Jiancheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deicing and status characteristics of dual-side pulsed surface dielectric barrier discharge</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2024-03</date><risdate>2024</risdate><volume>36</volume><issue>3</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>The deicing process and its status characteristics of dual-side pulsed surface dielectric barrier discharge (SDBD) are studied via electro-optical diagnostics, thermal properties, and numerical simulation. Experimental results show that the dual-side pulsed SDBD can remove the glaze ice compared to the traditional pulsed SDBD under the applied pulse voltage of 8 kV and a pulse frequency of 1 kHz. The maximal temperature of dual-side pulsed SDBD reaches 39.5 °C under the discharge time of 800 s, while the maximal temperature of traditional pulsed SDBD is still below ice point about −7.8 °C. Surface temperatures of dual-side pulsed SDBD demonstrate that the SDBD with a gap of 1 mm possesses prospects in deicing. The maximal surface temperature reaches 37.1 °C under the pulse of 8 kV after the discharge time of 90 s. Focusing on the thermal effect, a two-dimensional plasma fluid model is implemented, and the results also indicate that the dual-side pulsed SDBD with a gap of 1 mm produces a highest heat density among the three different configurations. Comparing the spatial-temporal evolutions of plasma on both dielectric sides, primary positive streamer has a longer propagation length of 8.6 mm than the secondary negative streamer, the primary negative streamer, and the secondary positive streamer, which induces a long heat covered area. Four stages of deicing process are analyzed through a series of electrical parameters under different covered ice conditions.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0191124</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-8559-8501</orcidid><orcidid>https://orcid.org/0000-0002-8690-0872</orcidid><orcidid>https://orcid.org/0000-0001-5557-8721</orcidid><orcidid>https://orcid.org/0000-0003-4938-5864</orcidid><orcidid>https://orcid.org/0000-0001-8857-4460</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2024-03, Vol.36 (3)
issn 1070-6631
1089-7666
language eng
recordid cdi_proquest_journals_2973254837
source American Institute of Physics (AIP) Journals
subjects Deicing
Dielectric barrier discharge
Ice cover
Ice removal
Mathematical models
Optical properties
Surface temperature
Temperature
Temperature effects
Thermodynamic properties
title Deicing and status characteristics of dual-side pulsed surface dielectric barrier discharge
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T19%3A08%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deicing%20and%20status%20characteristics%20of%20dual-side%20pulsed%20surface%20dielectric%20barrier%20discharge&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Peng,%20Bangfa&rft.date=2024-03&rft.volume=36&rft.issue=3&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0191124&rft_dat=%3Cproquest_cross%3E2973254837%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2973254837&rft_id=info:pmid/&rfr_iscdi=true