Deicing and status characteristics of dual-side pulsed surface dielectric barrier discharge
The deicing process and its status characteristics of dual-side pulsed surface dielectric barrier discharge (SDBD) are studied via electro-optical diagnostics, thermal properties, and numerical simulation. Experimental results show that the dual-side pulsed SDBD can remove the glaze ice compared to...
Gespeichert in:
Veröffentlicht in: | Physics of fluids (1994) 2024-03, Vol.36 (3) |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Physics of fluids (1994) |
container_volume | 36 |
creator | Peng, Bangfa Li, Jie Jiang, Nan Jiang, Yan Chen, Zhanqing Lei, Zhipeng Song, Jiancheng |
description | The deicing process and its status characteristics of dual-side pulsed surface dielectric barrier discharge (SDBD) are studied via electro-optical diagnostics, thermal properties, and numerical simulation. Experimental results show that the dual-side pulsed SDBD can remove the glaze ice compared to the traditional pulsed SDBD under the applied pulse voltage of 8 kV and a pulse frequency of 1 kHz. The maximal temperature of dual-side pulsed SDBD reaches 39.5 °C under the discharge time of 800 s, while the maximal temperature of traditional pulsed SDBD is still below ice point about −7.8 °C. Surface temperatures of dual-side pulsed SDBD demonstrate that the SDBD with a gap of 1 mm possesses prospects in deicing. The maximal surface temperature reaches 37.1 °C under the pulse of 8 kV after the discharge time of 90 s. Focusing on the thermal effect, a two-dimensional plasma fluid model is implemented, and the results also indicate that the dual-side pulsed SDBD with a gap of 1 mm produces a highest heat density among the three different configurations. Comparing the spatial-temporal evolutions of plasma on both dielectric sides, primary positive streamer has a longer propagation length of 8.6 mm than the secondary negative streamer, the primary negative streamer, and the secondary positive streamer, which induces a long heat covered area. Four stages of deicing process are analyzed through a series of electrical parameters under different covered ice conditions. |
doi_str_mv | 10.1063/5.0191124 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2973254837</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2973254837</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-5bb381e2179a4933b87a43174e011735ae4b883549047144a78601d182e4ab363</originalsourceid><addsrcrecordid>eNp90E1LAzEQBuAgCtaPg_8g4ElhaybJ5uMo9RMKXvTkYclmZ2tK3a1J9uC_N6U9e5pheHgHXkKugM2BKXFXzxlYAC6PyAyYsZVWSh3vds0qpQSckrOU1owxYbmakc8HDD4MK-qGjqbs8pSo_3LR-YwxpBx8omNPu8ltqhQ6pNtpk7DQKfbOI-0CbtDnGDxtXYwBYzmlXcIKL8hJ74q-PMxz8vH0-L54qZZvz6-L-2XludG5qttWGEAO2jpphWiNdlKAlsgAtKgdytYYUUvLpAYpnTaKQQeGo3StUOKcXO9zt3H8mTDlZj1OcSgvG2614LU0Qhd1s1c-jilF7JttDN8u_jbAml13Td0cuiv2dm-TD6WTMA7_4D8652zZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2973254837</pqid></control><display><type>article</type><title>Deicing and status characteristics of dual-side pulsed surface dielectric barrier discharge</title><source>American Institute of Physics (AIP) Journals</source><creator>Peng, Bangfa ; Li, Jie ; Jiang, Nan ; Jiang, Yan ; Chen, Zhanqing ; Lei, Zhipeng ; Song, Jiancheng</creator><creatorcontrib>Peng, Bangfa ; Li, Jie ; Jiang, Nan ; Jiang, Yan ; Chen, Zhanqing ; Lei, Zhipeng ; Song, Jiancheng</creatorcontrib><description>The deicing process and its status characteristics of dual-side pulsed surface dielectric barrier discharge (SDBD) are studied via electro-optical diagnostics, thermal properties, and numerical simulation. Experimental results show that the dual-side pulsed SDBD can remove the glaze ice compared to the traditional pulsed SDBD under the applied pulse voltage of 8 kV and a pulse frequency of 1 kHz. The maximal temperature of dual-side pulsed SDBD reaches 39.5 °C under the discharge time of 800 s, while the maximal temperature of traditional pulsed SDBD is still below ice point about −7.8 °C. Surface temperatures of dual-side pulsed SDBD demonstrate that the SDBD with a gap of 1 mm possesses prospects in deicing. The maximal surface temperature reaches 37.1 °C under the pulse of 8 kV after the discharge time of 90 s. Focusing on the thermal effect, a two-dimensional plasma fluid model is implemented, and the results also indicate that the dual-side pulsed SDBD with a gap of 1 mm produces a highest heat density among the three different configurations. Comparing the spatial-temporal evolutions of plasma on both dielectric sides, primary positive streamer has a longer propagation length of 8.6 mm than the secondary negative streamer, the primary negative streamer, and the secondary positive streamer, which induces a long heat covered area. Four stages of deicing process are analyzed through a series of electrical parameters under different covered ice conditions.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0191124</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Deicing ; Dielectric barrier discharge ; Ice cover ; Ice removal ; Mathematical models ; Optical properties ; Surface temperature ; Temperature ; Temperature effects ; Thermodynamic properties</subject><ispartof>Physics of fluids (1994), 2024-03, Vol.36 (3)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c287t-5bb381e2179a4933b87a43174e011735ae4b883549047144a78601d182e4ab363</cites><orcidid>0000-0002-8559-8501 ; 0000-0002-8690-0872 ; 0000-0001-5557-8721 ; 0000-0003-4938-5864 ; 0000-0001-8857-4460</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,790,4498,27901,27902</link.rule.ids></links><search><creatorcontrib>Peng, Bangfa</creatorcontrib><creatorcontrib>Li, Jie</creatorcontrib><creatorcontrib>Jiang, Nan</creatorcontrib><creatorcontrib>Jiang, Yan</creatorcontrib><creatorcontrib>Chen, Zhanqing</creatorcontrib><creatorcontrib>Lei, Zhipeng</creatorcontrib><creatorcontrib>Song, Jiancheng</creatorcontrib><title>Deicing and status characteristics of dual-side pulsed surface dielectric barrier discharge</title><title>Physics of fluids (1994)</title><description>The deicing process and its status characteristics of dual-side pulsed surface dielectric barrier discharge (SDBD) are studied via electro-optical diagnostics, thermal properties, and numerical simulation. Experimental results show that the dual-side pulsed SDBD can remove the glaze ice compared to the traditional pulsed SDBD under the applied pulse voltage of 8 kV and a pulse frequency of 1 kHz. The maximal temperature of dual-side pulsed SDBD reaches 39.5 °C under the discharge time of 800 s, while the maximal temperature of traditional pulsed SDBD is still below ice point about −7.8 °C. Surface temperatures of dual-side pulsed SDBD demonstrate that the SDBD with a gap of 1 mm possesses prospects in deicing. The maximal surface temperature reaches 37.1 °C under the pulse of 8 kV after the discharge time of 90 s. Focusing on the thermal effect, a two-dimensional plasma fluid model is implemented, and the results also indicate that the dual-side pulsed SDBD with a gap of 1 mm produces a highest heat density among the three different configurations. Comparing the spatial-temporal evolutions of plasma on both dielectric sides, primary positive streamer has a longer propagation length of 8.6 mm than the secondary negative streamer, the primary negative streamer, and the secondary positive streamer, which induces a long heat covered area. Four stages of deicing process are analyzed through a series of electrical parameters under different covered ice conditions.</description><subject>Deicing</subject><subject>Dielectric barrier discharge</subject><subject>Ice cover</subject><subject>Ice removal</subject><subject>Mathematical models</subject><subject>Optical properties</subject><subject>Surface temperature</subject><subject>Temperature</subject><subject>Temperature effects</subject><subject>Thermodynamic properties</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp90E1LAzEQBuAgCtaPg_8g4ElhaybJ5uMo9RMKXvTkYclmZ2tK3a1J9uC_N6U9e5pheHgHXkKugM2BKXFXzxlYAC6PyAyYsZVWSh3vds0qpQSckrOU1owxYbmakc8HDD4MK-qGjqbs8pSo_3LR-YwxpBx8omNPu8ltqhQ6pNtpk7DQKfbOI-0CbtDnGDxtXYwBYzmlXcIKL8hJ74q-PMxz8vH0-L54qZZvz6-L-2XludG5qttWGEAO2jpphWiNdlKAlsgAtKgdytYYUUvLpAYpnTaKQQeGo3StUOKcXO9zt3H8mTDlZj1OcSgvG2614LU0Qhd1s1c-jilF7JttDN8u_jbAml13Td0cuiv2dm-TD6WTMA7_4D8652zZ</recordid><startdate>202403</startdate><enddate>202403</enddate><creator>Peng, Bangfa</creator><creator>Li, Jie</creator><creator>Jiang, Nan</creator><creator>Jiang, Yan</creator><creator>Chen, Zhanqing</creator><creator>Lei, Zhipeng</creator><creator>Song, Jiancheng</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8559-8501</orcidid><orcidid>https://orcid.org/0000-0002-8690-0872</orcidid><orcidid>https://orcid.org/0000-0001-5557-8721</orcidid><orcidid>https://orcid.org/0000-0003-4938-5864</orcidid><orcidid>https://orcid.org/0000-0001-8857-4460</orcidid></search><sort><creationdate>202403</creationdate><title>Deicing and status characteristics of dual-side pulsed surface dielectric barrier discharge</title><author>Peng, Bangfa ; Li, Jie ; Jiang, Nan ; Jiang, Yan ; Chen, Zhanqing ; Lei, Zhipeng ; Song, Jiancheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-5bb381e2179a4933b87a43174e011735ae4b883549047144a78601d182e4ab363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Deicing</topic><topic>Dielectric barrier discharge</topic><topic>Ice cover</topic><topic>Ice removal</topic><topic>Mathematical models</topic><topic>Optical properties</topic><topic>Surface temperature</topic><topic>Temperature</topic><topic>Temperature effects</topic><topic>Thermodynamic properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Bangfa</creatorcontrib><creatorcontrib>Li, Jie</creatorcontrib><creatorcontrib>Jiang, Nan</creatorcontrib><creatorcontrib>Jiang, Yan</creatorcontrib><creatorcontrib>Chen, Zhanqing</creatorcontrib><creatorcontrib>Lei, Zhipeng</creatorcontrib><creatorcontrib>Song, Jiancheng</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Bangfa</au><au>Li, Jie</au><au>Jiang, Nan</au><au>Jiang, Yan</au><au>Chen, Zhanqing</au><au>Lei, Zhipeng</au><au>Song, Jiancheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deicing and status characteristics of dual-side pulsed surface dielectric barrier discharge</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2024-03</date><risdate>2024</risdate><volume>36</volume><issue>3</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>The deicing process and its status characteristics of dual-side pulsed surface dielectric barrier discharge (SDBD) are studied via electro-optical diagnostics, thermal properties, and numerical simulation. Experimental results show that the dual-side pulsed SDBD can remove the glaze ice compared to the traditional pulsed SDBD under the applied pulse voltage of 8 kV and a pulse frequency of 1 kHz. The maximal temperature of dual-side pulsed SDBD reaches 39.5 °C under the discharge time of 800 s, while the maximal temperature of traditional pulsed SDBD is still below ice point about −7.8 °C. Surface temperatures of dual-side pulsed SDBD demonstrate that the SDBD with a gap of 1 mm possesses prospects in deicing. The maximal surface temperature reaches 37.1 °C under the pulse of 8 kV after the discharge time of 90 s. Focusing on the thermal effect, a two-dimensional plasma fluid model is implemented, and the results also indicate that the dual-side pulsed SDBD with a gap of 1 mm produces a highest heat density among the three different configurations. Comparing the spatial-temporal evolutions of plasma on both dielectric sides, primary positive streamer has a longer propagation length of 8.6 mm than the secondary negative streamer, the primary negative streamer, and the secondary positive streamer, which induces a long heat covered area. Four stages of deicing process are analyzed through a series of electrical parameters under different covered ice conditions.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0191124</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-8559-8501</orcidid><orcidid>https://orcid.org/0000-0002-8690-0872</orcidid><orcidid>https://orcid.org/0000-0001-5557-8721</orcidid><orcidid>https://orcid.org/0000-0003-4938-5864</orcidid><orcidid>https://orcid.org/0000-0001-8857-4460</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-6631 |
ispartof | Physics of fluids (1994), 2024-03, Vol.36 (3) |
issn | 1070-6631 1089-7666 |
language | eng |
recordid | cdi_proquest_journals_2973254837 |
source | American Institute of Physics (AIP) Journals |
subjects | Deicing Dielectric barrier discharge Ice cover Ice removal Mathematical models Optical properties Surface temperature Temperature Temperature effects Thermodynamic properties |
title | Deicing and status characteristics of dual-side pulsed surface dielectric barrier discharge |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T19%3A08%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deicing%20and%20status%20characteristics%20of%20dual-side%20pulsed%20surface%20dielectric%20barrier%20discharge&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Peng,%20Bangfa&rft.date=2024-03&rft.volume=36&rft.issue=3&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0191124&rft_dat=%3Cproquest_cross%3E2973254837%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2973254837&rft_id=info:pmid/&rfr_iscdi=true |