Design and Economic Analysis of 275 kV HTS Cable for U.K. Transmission Network

Achieving Net Zero requires a significant increase in electricity demand for transportation, heating, and industrial sectors. However, the increase in demand poses a challenge for heavily congested urban networks. High-Temperature Superconductor (HTS) 275 kV cables offer a credible technology soluti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on applied superconductivity 2024-05, Vol.34 (3), p.1-5
Hauptverfasser: Yuan, Weijia, Chaganti, Pavan, Hong, Qiteng, Kawal, Kevin, Zhang, Min, Maclennan, David, Strachan, Allison, Ward, K, Baxter, Lewis, Saugrain, Jean-Maxime, Allais, Arnaud, Lallouet, Nicolas, Pochylski, Anne, West, Beate, Gardner, Richard, Peesapati, Vidyadhar, Ross, Mike, Douvaras, Loukas, Coleman, Sean, Devine, Nick
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue 3
container_start_page 1
container_title IEEE transactions on applied superconductivity
container_volume 34
creator Yuan, Weijia
Chaganti, Pavan
Hong, Qiteng
Kawal, Kevin
Zhang, Min
Maclennan, David
Strachan, Allison
Ward, K
Baxter, Lewis
Saugrain, Jean-Maxime
Allais, Arnaud
Lallouet, Nicolas
Pochylski, Anne
West, Beate
Gardner, Richard
Peesapati, Vidyadhar
Ross, Mike
Douvaras, Loukas
Coleman, Sean
Devine, Nick
description Achieving Net Zero requires a significant increase in electricity demand for transportation, heating, and industrial sectors. However, the increase in demand poses a challenge for heavily congested urban networks. High-Temperature Superconductor (HTS) 275 kV cables offer a credible technology solution that can uprate existing cable routes up to five times higher capacity density, utilizing existing 275 kV substations and removing the need to uprate circuits to 400 kV. This paper presents a detailed technical design and cost-benefit analysis for the cable installation. The technical analysis covers location selection, power system considerations, and standards alignment. A 12.9 km long 275 kV cable has been designed using cold dielectric and three separate phases. An equivalent circuit model was built using distance and differential protection methods to study the operation during different fault scenarios. A Standard mapping exercise has been performed to understand the gaps between the HTS and conventional cables by covering seven existing standards to identify the further tests to de-risk the technology. The economic analysis by considering the full lifecycle shows HTS is the economic for the chosen location with instances where substation equipment or land expansion costs are dominant.
doi_str_mv 10.1109/TASC.2024.3361869
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2973245217</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10420433</ieee_id><sourcerecordid>2973245217</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-76377af260e7ceb9b0051a9ef5fcfcced2bcd0e0519b9a4fe6e54afa6a02d6a13</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRsFZ_gOBhwXPifibZY4mtFUs9NPW6bDazkn5k626L9N-b0h48zTA87_DyIPRISUopUS_VaFGmjDCRcp7RIlNXaEClLBImqbzudyJpUjDGb9FdjCtCqCiEHKD5K8T2u8Oma_DY-s5vW4tHndkcYxuxd5jlEq-_8LRa4NLUG8DOB7xMP1JcBdPFbRtj6zs8h_2vD-t7dOPMJsLDZQ7RcjKuymky-3x7L0ezxDIl9kme8Tw3jmUEcgu1qklfzyhw0llnLTSstg2B_qhqZYSDDKQwzmSGsCYzlA_R8_nvLvifA8S9XvlD6GtHzVTOmZCM5j1Fz5QNPsYATu9CuzXhqCnRJ236pE2ftOmLtj7zdM60APCPF4wIzvkfzYlnzA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2973245217</pqid></control><display><type>article</type><title>Design and Economic Analysis of 275 kV HTS Cable for U.K. Transmission Network</title><source>IEEE Electronic Library (IEL)</source><creator>Yuan, Weijia ; Chaganti, Pavan ; Hong, Qiteng ; Kawal, Kevin ; Zhang, Min ; Maclennan, David ; Strachan, Allison ; Ward, K ; Baxter, Lewis ; Saugrain, Jean-Maxime ; Allais, Arnaud ; Lallouet, Nicolas ; Pochylski, Anne ; West, Beate ; Gardner, Richard ; Peesapati, Vidyadhar ; Ross, Mike ; Douvaras, Loukas ; Coleman, Sean ; Devine, Nick</creator><creatorcontrib>Yuan, Weijia ; Chaganti, Pavan ; Hong, Qiteng ; Kawal, Kevin ; Zhang, Min ; Maclennan, David ; Strachan, Allison ; Ward, K ; Baxter, Lewis ; Saugrain, Jean-Maxime ; Allais, Arnaud ; Lallouet, Nicolas ; Pochylski, Anne ; West, Beate ; Gardner, Richard ; Peesapati, Vidyadhar ; Ross, Mike ; Douvaras, Loukas ; Coleman, Sean ; Devine, Nick</creatorcontrib><description>Achieving Net Zero requires a significant increase in electricity demand for transportation, heating, and industrial sectors. However, the increase in demand poses a challenge for heavily congested urban networks. High-Temperature Superconductor (HTS) 275 kV cables offer a credible technology solution that can uprate existing cable routes up to five times higher capacity density, utilizing existing 275 kV substations and removing the need to uprate circuits to 400 kV. This paper presents a detailed technical design and cost-benefit analysis for the cable installation. The technical analysis covers location selection, power system considerations, and standards alignment. A 12.9 km long 275 kV cable has been designed using cold dielectric and three separate phases. An equivalent circuit model was built using distance and differential protection methods to study the operation during different fault scenarios. A Standard mapping exercise has been performed to understand the gaps between the HTS and conventional cables by covering seven existing standards to identify the further tests to de-risk the technology. The economic analysis by considering the full lifecycle shows HTS is the economic for the chosen location with instances where substation equipment or land expansion costs are dominant.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2024.3361869</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Cable insulation ; Cables ; Circuit design ; Circuit faults ; Cost benefit analysis ; Design analysis ; Economic analysis ; Electric power demand ; Equivalent circuits ; faults ; High temperature superconductors ; HTS cable ; Power cables ; Substations ; Superconducting cables ; transmission networks</subject><ispartof>IEEE transactions on applied superconductivity, 2024-05, Vol.34 (3), p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-76377af260e7ceb9b0051a9ef5fcfcced2bcd0e0519b9a4fe6e54afa6a02d6a13</citedby><cites>FETCH-LOGICAL-c294t-76377af260e7ceb9b0051a9ef5fcfcced2bcd0e0519b9a4fe6e54afa6a02d6a13</cites><orcidid>0000-0002-3744-8891 ; 0009-0008-3985-1167 ; 0000-0002-7953-4704 ; 0000-0003-3249-6461 ; 0000-0001-9122-1981 ; 0009-0008-4381-641X ; 0000-0001-5508-780X ; 0009-0000-4025-0512 ; 0000-0003-3963-9509 ; 0000-0003-4296-7730</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10420433$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54735</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10420433$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yuan, Weijia</creatorcontrib><creatorcontrib>Chaganti, Pavan</creatorcontrib><creatorcontrib>Hong, Qiteng</creatorcontrib><creatorcontrib>Kawal, Kevin</creatorcontrib><creatorcontrib>Zhang, Min</creatorcontrib><creatorcontrib>Maclennan, David</creatorcontrib><creatorcontrib>Strachan, Allison</creatorcontrib><creatorcontrib>Ward, K</creatorcontrib><creatorcontrib>Baxter, Lewis</creatorcontrib><creatorcontrib>Saugrain, Jean-Maxime</creatorcontrib><creatorcontrib>Allais, Arnaud</creatorcontrib><creatorcontrib>Lallouet, Nicolas</creatorcontrib><creatorcontrib>Pochylski, Anne</creatorcontrib><creatorcontrib>West, Beate</creatorcontrib><creatorcontrib>Gardner, Richard</creatorcontrib><creatorcontrib>Peesapati, Vidyadhar</creatorcontrib><creatorcontrib>Ross, Mike</creatorcontrib><creatorcontrib>Douvaras, Loukas</creatorcontrib><creatorcontrib>Coleman, Sean</creatorcontrib><creatorcontrib>Devine, Nick</creatorcontrib><title>Design and Economic Analysis of 275 kV HTS Cable for U.K. Transmission Network</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>Achieving Net Zero requires a significant increase in electricity demand for transportation, heating, and industrial sectors. However, the increase in demand poses a challenge for heavily congested urban networks. High-Temperature Superconductor (HTS) 275 kV cables offer a credible technology solution that can uprate existing cable routes up to five times higher capacity density, utilizing existing 275 kV substations and removing the need to uprate circuits to 400 kV. This paper presents a detailed technical design and cost-benefit analysis for the cable installation. The technical analysis covers location selection, power system considerations, and standards alignment. A 12.9 km long 275 kV cable has been designed using cold dielectric and three separate phases. An equivalent circuit model was built using distance and differential protection methods to study the operation during different fault scenarios. A Standard mapping exercise has been performed to understand the gaps between the HTS and conventional cables by covering seven existing standards to identify the further tests to de-risk the technology. The economic analysis by considering the full lifecycle shows HTS is the economic for the chosen location with instances where substation equipment or land expansion costs are dominant.</description><subject>Cable insulation</subject><subject>Cables</subject><subject>Circuit design</subject><subject>Circuit faults</subject><subject>Cost benefit analysis</subject><subject>Design analysis</subject><subject>Economic analysis</subject><subject>Electric power demand</subject><subject>Equivalent circuits</subject><subject>faults</subject><subject>High temperature superconductors</subject><subject>HTS cable</subject><subject>Power cables</subject><subject>Substations</subject><subject>Superconducting cables</subject><subject>transmission networks</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AQhhdRsFZ_gOBhwXPifibZY4mtFUs9NPW6bDazkn5k626L9N-b0h48zTA87_DyIPRISUopUS_VaFGmjDCRcp7RIlNXaEClLBImqbzudyJpUjDGb9FdjCtCqCiEHKD5K8T2u8Oma_DY-s5vW4tHndkcYxuxd5jlEq-_8LRa4NLUG8DOB7xMP1JcBdPFbRtj6zs8h_2vD-t7dOPMJsLDZQ7RcjKuymky-3x7L0ezxDIl9kme8Tw3jmUEcgu1qklfzyhw0llnLTSstg2B_qhqZYSDDKQwzmSGsCYzlA_R8_nvLvifA8S9XvlD6GtHzVTOmZCM5j1Fz5QNPsYATu9CuzXhqCnRJ236pE2ftOmLtj7zdM60APCPF4wIzvkfzYlnzA</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Yuan, Weijia</creator><creator>Chaganti, Pavan</creator><creator>Hong, Qiteng</creator><creator>Kawal, Kevin</creator><creator>Zhang, Min</creator><creator>Maclennan, David</creator><creator>Strachan, Allison</creator><creator>Ward, K</creator><creator>Baxter, Lewis</creator><creator>Saugrain, Jean-Maxime</creator><creator>Allais, Arnaud</creator><creator>Lallouet, Nicolas</creator><creator>Pochylski, Anne</creator><creator>West, Beate</creator><creator>Gardner, Richard</creator><creator>Peesapati, Vidyadhar</creator><creator>Ross, Mike</creator><creator>Douvaras, Loukas</creator><creator>Coleman, Sean</creator><creator>Devine, Nick</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3744-8891</orcidid><orcidid>https://orcid.org/0009-0008-3985-1167</orcidid><orcidid>https://orcid.org/0000-0002-7953-4704</orcidid><orcidid>https://orcid.org/0000-0003-3249-6461</orcidid><orcidid>https://orcid.org/0000-0001-9122-1981</orcidid><orcidid>https://orcid.org/0009-0008-4381-641X</orcidid><orcidid>https://orcid.org/0000-0001-5508-780X</orcidid><orcidid>https://orcid.org/0009-0000-4025-0512</orcidid><orcidid>https://orcid.org/0000-0003-3963-9509</orcidid><orcidid>https://orcid.org/0000-0003-4296-7730</orcidid></search><sort><creationdate>20240501</creationdate><title>Design and Economic Analysis of 275 kV HTS Cable for U.K. Transmission Network</title><author>Yuan, Weijia ; Chaganti, Pavan ; Hong, Qiteng ; Kawal, Kevin ; Zhang, Min ; Maclennan, David ; Strachan, Allison ; Ward, K ; Baxter, Lewis ; Saugrain, Jean-Maxime ; Allais, Arnaud ; Lallouet, Nicolas ; Pochylski, Anne ; West, Beate ; Gardner, Richard ; Peesapati, Vidyadhar ; Ross, Mike ; Douvaras, Loukas ; Coleman, Sean ; Devine, Nick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-76377af260e7ceb9b0051a9ef5fcfcced2bcd0e0519b9a4fe6e54afa6a02d6a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cable insulation</topic><topic>Cables</topic><topic>Circuit design</topic><topic>Circuit faults</topic><topic>Cost benefit analysis</topic><topic>Design analysis</topic><topic>Economic analysis</topic><topic>Electric power demand</topic><topic>Equivalent circuits</topic><topic>faults</topic><topic>High temperature superconductors</topic><topic>HTS cable</topic><topic>Power cables</topic><topic>Substations</topic><topic>Superconducting cables</topic><topic>transmission networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Weijia</creatorcontrib><creatorcontrib>Chaganti, Pavan</creatorcontrib><creatorcontrib>Hong, Qiteng</creatorcontrib><creatorcontrib>Kawal, Kevin</creatorcontrib><creatorcontrib>Zhang, Min</creatorcontrib><creatorcontrib>Maclennan, David</creatorcontrib><creatorcontrib>Strachan, Allison</creatorcontrib><creatorcontrib>Ward, K</creatorcontrib><creatorcontrib>Baxter, Lewis</creatorcontrib><creatorcontrib>Saugrain, Jean-Maxime</creatorcontrib><creatorcontrib>Allais, Arnaud</creatorcontrib><creatorcontrib>Lallouet, Nicolas</creatorcontrib><creatorcontrib>Pochylski, Anne</creatorcontrib><creatorcontrib>West, Beate</creatorcontrib><creatorcontrib>Gardner, Richard</creatorcontrib><creatorcontrib>Peesapati, Vidyadhar</creatorcontrib><creatorcontrib>Ross, Mike</creatorcontrib><creatorcontrib>Douvaras, Loukas</creatorcontrib><creatorcontrib>Coleman, Sean</creatorcontrib><creatorcontrib>Devine, Nick</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yuan, Weijia</au><au>Chaganti, Pavan</au><au>Hong, Qiteng</au><au>Kawal, Kevin</au><au>Zhang, Min</au><au>Maclennan, David</au><au>Strachan, Allison</au><au>Ward, K</au><au>Baxter, Lewis</au><au>Saugrain, Jean-Maxime</au><au>Allais, Arnaud</au><au>Lallouet, Nicolas</au><au>Pochylski, Anne</au><au>West, Beate</au><au>Gardner, Richard</au><au>Peesapati, Vidyadhar</au><au>Ross, Mike</au><au>Douvaras, Loukas</au><au>Coleman, Sean</au><au>Devine, Nick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and Economic Analysis of 275 kV HTS Cable for U.K. Transmission Network</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2024-05-01</date><risdate>2024</risdate><volume>34</volume><issue>3</issue><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>Achieving Net Zero requires a significant increase in electricity demand for transportation, heating, and industrial sectors. However, the increase in demand poses a challenge for heavily congested urban networks. High-Temperature Superconductor (HTS) 275 kV cables offer a credible technology solution that can uprate existing cable routes up to five times higher capacity density, utilizing existing 275 kV substations and removing the need to uprate circuits to 400 kV. This paper presents a detailed technical design and cost-benefit analysis for the cable installation. The technical analysis covers location selection, power system considerations, and standards alignment. A 12.9 km long 275 kV cable has been designed using cold dielectric and three separate phases. An equivalent circuit model was built using distance and differential protection methods to study the operation during different fault scenarios. A Standard mapping exercise has been performed to understand the gaps between the HTS and conventional cables by covering seven existing standards to identify the further tests to de-risk the technology. The economic analysis by considering the full lifecycle shows HTS is the economic for the chosen location with instances where substation equipment or land expansion costs are dominant.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TASC.2024.3361869</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-3744-8891</orcidid><orcidid>https://orcid.org/0009-0008-3985-1167</orcidid><orcidid>https://orcid.org/0000-0002-7953-4704</orcidid><orcidid>https://orcid.org/0000-0003-3249-6461</orcidid><orcidid>https://orcid.org/0000-0001-9122-1981</orcidid><orcidid>https://orcid.org/0009-0008-4381-641X</orcidid><orcidid>https://orcid.org/0000-0001-5508-780X</orcidid><orcidid>https://orcid.org/0009-0000-4025-0512</orcidid><orcidid>https://orcid.org/0000-0003-3963-9509</orcidid><orcidid>https://orcid.org/0000-0003-4296-7730</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8223
ispartof IEEE transactions on applied superconductivity, 2024-05, Vol.34 (3), p.1-5
issn 1051-8223
1558-2515
language eng
recordid cdi_proquest_journals_2973245217
source IEEE Electronic Library (IEL)
subjects Cable insulation
Cables
Circuit design
Circuit faults
Cost benefit analysis
Design analysis
Economic analysis
Electric power demand
Equivalent circuits
faults
High temperature superconductors
HTS cable
Power cables
Substations
Superconducting cables
transmission networks
title Design and Economic Analysis of 275 kV HTS Cable for U.K. Transmission Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T07%3A43%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20Economic%20Analysis%20of%20275%20kV%20HTS%20Cable%20for%20U.K.%20Transmission%20Network&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Yuan,%20Weijia&rft.date=2024-05-01&rft.volume=34&rft.issue=3&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2024.3361869&rft_dat=%3Cproquest_RIE%3E2973245217%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2973245217&rft_id=info:pmid/&rft_ieee_id=10420433&rfr_iscdi=true