Design and Economic Analysis of 275 kV HTS Cable for U.K. Transmission Network
Achieving Net Zero requires a significant increase in electricity demand for transportation, heating, and industrial sectors. However, the increase in demand poses a challenge for heavily congested urban networks. High-Temperature Superconductor (HTS) 275 kV cables offer a credible technology soluti...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on applied superconductivity 2024-05, Vol.34 (3), p.1-5 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5 |
---|---|
container_issue | 3 |
container_start_page | 1 |
container_title | IEEE transactions on applied superconductivity |
container_volume | 34 |
creator | Yuan, Weijia Chaganti, Pavan Hong, Qiteng Kawal, Kevin Zhang, Min Maclennan, David Strachan, Allison Ward, K Baxter, Lewis Saugrain, Jean-Maxime Allais, Arnaud Lallouet, Nicolas Pochylski, Anne West, Beate Gardner, Richard Peesapati, Vidyadhar Ross, Mike Douvaras, Loukas Coleman, Sean Devine, Nick |
description | Achieving Net Zero requires a significant increase in electricity demand for transportation, heating, and industrial sectors. However, the increase in demand poses a challenge for heavily congested urban networks. High-Temperature Superconductor (HTS) 275 kV cables offer a credible technology solution that can uprate existing cable routes up to five times higher capacity density, utilizing existing 275 kV substations and removing the need to uprate circuits to 400 kV. This paper presents a detailed technical design and cost-benefit analysis for the cable installation. The technical analysis covers location selection, power system considerations, and standards alignment. A 12.9 km long 275 kV cable has been designed using cold dielectric and three separate phases. An equivalent circuit model was built using distance and differential protection methods to study the operation during different fault scenarios. A Standard mapping exercise has been performed to understand the gaps between the HTS and conventional cables by covering seven existing standards to identify the further tests to de-risk the technology. The economic analysis by considering the full lifecycle shows HTS is the economic for the chosen location with instances where substation equipment or land expansion costs are dominant. |
doi_str_mv | 10.1109/TASC.2024.3361869 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2973245217</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10420433</ieee_id><sourcerecordid>2973245217</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-76377af260e7ceb9b0051a9ef5fcfcced2bcd0e0519b9a4fe6e54afa6a02d6a13</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRsFZ_gOBhwXPifibZY4mtFUs9NPW6bDazkn5k626L9N-b0h48zTA87_DyIPRISUopUS_VaFGmjDCRcp7RIlNXaEClLBImqbzudyJpUjDGb9FdjCtCqCiEHKD5K8T2u8Oma_DY-s5vW4tHndkcYxuxd5jlEq-_8LRa4NLUG8DOB7xMP1JcBdPFbRtj6zs8h_2vD-t7dOPMJsLDZQ7RcjKuymky-3x7L0ezxDIl9kme8Tw3jmUEcgu1qklfzyhw0llnLTSstg2B_qhqZYSDDKQwzmSGsCYzlA_R8_nvLvifA8S9XvlD6GtHzVTOmZCM5j1Fz5QNPsYATu9CuzXhqCnRJ236pE2ftOmLtj7zdM60APCPF4wIzvkfzYlnzA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2973245217</pqid></control><display><type>article</type><title>Design and Economic Analysis of 275 kV HTS Cable for U.K. Transmission Network</title><source>IEEE Electronic Library (IEL)</source><creator>Yuan, Weijia ; Chaganti, Pavan ; Hong, Qiteng ; Kawal, Kevin ; Zhang, Min ; Maclennan, David ; Strachan, Allison ; Ward, K ; Baxter, Lewis ; Saugrain, Jean-Maxime ; Allais, Arnaud ; Lallouet, Nicolas ; Pochylski, Anne ; West, Beate ; Gardner, Richard ; Peesapati, Vidyadhar ; Ross, Mike ; Douvaras, Loukas ; Coleman, Sean ; Devine, Nick</creator><creatorcontrib>Yuan, Weijia ; Chaganti, Pavan ; Hong, Qiteng ; Kawal, Kevin ; Zhang, Min ; Maclennan, David ; Strachan, Allison ; Ward, K ; Baxter, Lewis ; Saugrain, Jean-Maxime ; Allais, Arnaud ; Lallouet, Nicolas ; Pochylski, Anne ; West, Beate ; Gardner, Richard ; Peesapati, Vidyadhar ; Ross, Mike ; Douvaras, Loukas ; Coleman, Sean ; Devine, Nick</creatorcontrib><description>Achieving Net Zero requires a significant increase in electricity demand for transportation, heating, and industrial sectors. However, the increase in demand poses a challenge for heavily congested urban networks. High-Temperature Superconductor (HTS) 275 kV cables offer a credible technology solution that can uprate existing cable routes up to five times higher capacity density, utilizing existing 275 kV substations and removing the need to uprate circuits to 400 kV. This paper presents a detailed technical design and cost-benefit analysis for the cable installation. The technical analysis covers location selection, power system considerations, and standards alignment. A 12.9 km long 275 kV cable has been designed using cold dielectric and three separate phases. An equivalent circuit model was built using distance and differential protection methods to study the operation during different fault scenarios. A Standard mapping exercise has been performed to understand the gaps between the HTS and conventional cables by covering seven existing standards to identify the further tests to de-risk the technology. The economic analysis by considering the full lifecycle shows HTS is the economic for the chosen location with instances where substation equipment or land expansion costs are dominant.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2024.3361869</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Cable insulation ; Cables ; Circuit design ; Circuit faults ; Cost benefit analysis ; Design analysis ; Economic analysis ; Electric power demand ; Equivalent circuits ; faults ; High temperature superconductors ; HTS cable ; Power cables ; Substations ; Superconducting cables ; transmission networks</subject><ispartof>IEEE transactions on applied superconductivity, 2024-05, Vol.34 (3), p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-76377af260e7ceb9b0051a9ef5fcfcced2bcd0e0519b9a4fe6e54afa6a02d6a13</citedby><cites>FETCH-LOGICAL-c294t-76377af260e7ceb9b0051a9ef5fcfcced2bcd0e0519b9a4fe6e54afa6a02d6a13</cites><orcidid>0000-0002-3744-8891 ; 0009-0008-3985-1167 ; 0000-0002-7953-4704 ; 0000-0003-3249-6461 ; 0000-0001-9122-1981 ; 0009-0008-4381-641X ; 0000-0001-5508-780X ; 0009-0000-4025-0512 ; 0000-0003-3963-9509 ; 0000-0003-4296-7730</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10420433$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54735</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10420433$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yuan, Weijia</creatorcontrib><creatorcontrib>Chaganti, Pavan</creatorcontrib><creatorcontrib>Hong, Qiteng</creatorcontrib><creatorcontrib>Kawal, Kevin</creatorcontrib><creatorcontrib>Zhang, Min</creatorcontrib><creatorcontrib>Maclennan, David</creatorcontrib><creatorcontrib>Strachan, Allison</creatorcontrib><creatorcontrib>Ward, K</creatorcontrib><creatorcontrib>Baxter, Lewis</creatorcontrib><creatorcontrib>Saugrain, Jean-Maxime</creatorcontrib><creatorcontrib>Allais, Arnaud</creatorcontrib><creatorcontrib>Lallouet, Nicolas</creatorcontrib><creatorcontrib>Pochylski, Anne</creatorcontrib><creatorcontrib>West, Beate</creatorcontrib><creatorcontrib>Gardner, Richard</creatorcontrib><creatorcontrib>Peesapati, Vidyadhar</creatorcontrib><creatorcontrib>Ross, Mike</creatorcontrib><creatorcontrib>Douvaras, Loukas</creatorcontrib><creatorcontrib>Coleman, Sean</creatorcontrib><creatorcontrib>Devine, Nick</creatorcontrib><title>Design and Economic Analysis of 275 kV HTS Cable for U.K. Transmission Network</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>Achieving Net Zero requires a significant increase in electricity demand for transportation, heating, and industrial sectors. However, the increase in demand poses a challenge for heavily congested urban networks. High-Temperature Superconductor (HTS) 275 kV cables offer a credible technology solution that can uprate existing cable routes up to five times higher capacity density, utilizing existing 275 kV substations and removing the need to uprate circuits to 400 kV. This paper presents a detailed technical design and cost-benefit analysis for the cable installation. The technical analysis covers location selection, power system considerations, and standards alignment. A 12.9 km long 275 kV cable has been designed using cold dielectric and three separate phases. An equivalent circuit model was built using distance and differential protection methods to study the operation during different fault scenarios. A Standard mapping exercise has been performed to understand the gaps between the HTS and conventional cables by covering seven existing standards to identify the further tests to de-risk the technology. The economic analysis by considering the full lifecycle shows HTS is the economic for the chosen location with instances where substation equipment or land expansion costs are dominant.</description><subject>Cable insulation</subject><subject>Cables</subject><subject>Circuit design</subject><subject>Circuit faults</subject><subject>Cost benefit analysis</subject><subject>Design analysis</subject><subject>Economic analysis</subject><subject>Electric power demand</subject><subject>Equivalent circuits</subject><subject>faults</subject><subject>High temperature superconductors</subject><subject>HTS cable</subject><subject>Power cables</subject><subject>Substations</subject><subject>Superconducting cables</subject><subject>transmission networks</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AQhhdRsFZ_gOBhwXPifibZY4mtFUs9NPW6bDazkn5k626L9N-b0h48zTA87_DyIPRISUopUS_VaFGmjDCRcp7RIlNXaEClLBImqbzudyJpUjDGb9FdjCtCqCiEHKD5K8T2u8Oma_DY-s5vW4tHndkcYxuxd5jlEq-_8LRa4NLUG8DOB7xMP1JcBdPFbRtj6zs8h_2vD-t7dOPMJsLDZQ7RcjKuymky-3x7L0ezxDIl9kme8Tw3jmUEcgu1qklfzyhw0llnLTSstg2B_qhqZYSDDKQwzmSGsCYzlA_R8_nvLvifA8S9XvlD6GtHzVTOmZCM5j1Fz5QNPsYATu9CuzXhqCnRJ236pE2ftOmLtj7zdM60APCPF4wIzvkfzYlnzA</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Yuan, Weijia</creator><creator>Chaganti, Pavan</creator><creator>Hong, Qiteng</creator><creator>Kawal, Kevin</creator><creator>Zhang, Min</creator><creator>Maclennan, David</creator><creator>Strachan, Allison</creator><creator>Ward, K</creator><creator>Baxter, Lewis</creator><creator>Saugrain, Jean-Maxime</creator><creator>Allais, Arnaud</creator><creator>Lallouet, Nicolas</creator><creator>Pochylski, Anne</creator><creator>West, Beate</creator><creator>Gardner, Richard</creator><creator>Peesapati, Vidyadhar</creator><creator>Ross, Mike</creator><creator>Douvaras, Loukas</creator><creator>Coleman, Sean</creator><creator>Devine, Nick</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3744-8891</orcidid><orcidid>https://orcid.org/0009-0008-3985-1167</orcidid><orcidid>https://orcid.org/0000-0002-7953-4704</orcidid><orcidid>https://orcid.org/0000-0003-3249-6461</orcidid><orcidid>https://orcid.org/0000-0001-9122-1981</orcidid><orcidid>https://orcid.org/0009-0008-4381-641X</orcidid><orcidid>https://orcid.org/0000-0001-5508-780X</orcidid><orcidid>https://orcid.org/0009-0000-4025-0512</orcidid><orcidid>https://orcid.org/0000-0003-3963-9509</orcidid><orcidid>https://orcid.org/0000-0003-4296-7730</orcidid></search><sort><creationdate>20240501</creationdate><title>Design and Economic Analysis of 275 kV HTS Cable for U.K. Transmission Network</title><author>Yuan, Weijia ; Chaganti, Pavan ; Hong, Qiteng ; Kawal, Kevin ; Zhang, Min ; Maclennan, David ; Strachan, Allison ; Ward, K ; Baxter, Lewis ; Saugrain, Jean-Maxime ; Allais, Arnaud ; Lallouet, Nicolas ; Pochylski, Anne ; West, Beate ; Gardner, Richard ; Peesapati, Vidyadhar ; Ross, Mike ; Douvaras, Loukas ; Coleman, Sean ; Devine, Nick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-76377af260e7ceb9b0051a9ef5fcfcced2bcd0e0519b9a4fe6e54afa6a02d6a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cable insulation</topic><topic>Cables</topic><topic>Circuit design</topic><topic>Circuit faults</topic><topic>Cost benefit analysis</topic><topic>Design analysis</topic><topic>Economic analysis</topic><topic>Electric power demand</topic><topic>Equivalent circuits</topic><topic>faults</topic><topic>High temperature superconductors</topic><topic>HTS cable</topic><topic>Power cables</topic><topic>Substations</topic><topic>Superconducting cables</topic><topic>transmission networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Weijia</creatorcontrib><creatorcontrib>Chaganti, Pavan</creatorcontrib><creatorcontrib>Hong, Qiteng</creatorcontrib><creatorcontrib>Kawal, Kevin</creatorcontrib><creatorcontrib>Zhang, Min</creatorcontrib><creatorcontrib>Maclennan, David</creatorcontrib><creatorcontrib>Strachan, Allison</creatorcontrib><creatorcontrib>Ward, K</creatorcontrib><creatorcontrib>Baxter, Lewis</creatorcontrib><creatorcontrib>Saugrain, Jean-Maxime</creatorcontrib><creatorcontrib>Allais, Arnaud</creatorcontrib><creatorcontrib>Lallouet, Nicolas</creatorcontrib><creatorcontrib>Pochylski, Anne</creatorcontrib><creatorcontrib>West, Beate</creatorcontrib><creatorcontrib>Gardner, Richard</creatorcontrib><creatorcontrib>Peesapati, Vidyadhar</creatorcontrib><creatorcontrib>Ross, Mike</creatorcontrib><creatorcontrib>Douvaras, Loukas</creatorcontrib><creatorcontrib>Coleman, Sean</creatorcontrib><creatorcontrib>Devine, Nick</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yuan, Weijia</au><au>Chaganti, Pavan</au><au>Hong, Qiteng</au><au>Kawal, Kevin</au><au>Zhang, Min</au><au>Maclennan, David</au><au>Strachan, Allison</au><au>Ward, K</au><au>Baxter, Lewis</au><au>Saugrain, Jean-Maxime</au><au>Allais, Arnaud</au><au>Lallouet, Nicolas</au><au>Pochylski, Anne</au><au>West, Beate</au><au>Gardner, Richard</au><au>Peesapati, Vidyadhar</au><au>Ross, Mike</au><au>Douvaras, Loukas</au><au>Coleman, Sean</au><au>Devine, Nick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and Economic Analysis of 275 kV HTS Cable for U.K. Transmission Network</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2024-05-01</date><risdate>2024</risdate><volume>34</volume><issue>3</issue><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>Achieving Net Zero requires a significant increase in electricity demand for transportation, heating, and industrial sectors. However, the increase in demand poses a challenge for heavily congested urban networks. High-Temperature Superconductor (HTS) 275 kV cables offer a credible technology solution that can uprate existing cable routes up to five times higher capacity density, utilizing existing 275 kV substations and removing the need to uprate circuits to 400 kV. This paper presents a detailed technical design and cost-benefit analysis for the cable installation. The technical analysis covers location selection, power system considerations, and standards alignment. A 12.9 km long 275 kV cable has been designed using cold dielectric and three separate phases. An equivalent circuit model was built using distance and differential protection methods to study the operation during different fault scenarios. A Standard mapping exercise has been performed to understand the gaps between the HTS and conventional cables by covering seven existing standards to identify the further tests to de-risk the technology. The economic analysis by considering the full lifecycle shows HTS is the economic for the chosen location with instances where substation equipment or land expansion costs are dominant.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TASC.2024.3361869</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-3744-8891</orcidid><orcidid>https://orcid.org/0009-0008-3985-1167</orcidid><orcidid>https://orcid.org/0000-0002-7953-4704</orcidid><orcidid>https://orcid.org/0000-0003-3249-6461</orcidid><orcidid>https://orcid.org/0000-0001-9122-1981</orcidid><orcidid>https://orcid.org/0009-0008-4381-641X</orcidid><orcidid>https://orcid.org/0000-0001-5508-780X</orcidid><orcidid>https://orcid.org/0009-0000-4025-0512</orcidid><orcidid>https://orcid.org/0000-0003-3963-9509</orcidid><orcidid>https://orcid.org/0000-0003-4296-7730</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-8223 |
ispartof | IEEE transactions on applied superconductivity, 2024-05, Vol.34 (3), p.1-5 |
issn | 1051-8223 1558-2515 |
language | eng |
recordid | cdi_proquest_journals_2973245217 |
source | IEEE Electronic Library (IEL) |
subjects | Cable insulation Cables Circuit design Circuit faults Cost benefit analysis Design analysis Economic analysis Electric power demand Equivalent circuits faults High temperature superconductors HTS cable Power cables Substations Superconducting cables transmission networks |
title | Design and Economic Analysis of 275 kV HTS Cable for U.K. Transmission Network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T07%3A43%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20Economic%20Analysis%20of%20275%20kV%20HTS%20Cable%20for%20U.K.%20Transmission%20Network&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Yuan,%20Weijia&rft.date=2024-05-01&rft.volume=34&rft.issue=3&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2024.3361869&rft_dat=%3Cproquest_RIE%3E2973245217%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2973245217&rft_id=info:pmid/&rft_ieee_id=10420433&rfr_iscdi=true |